論文の概要: Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems
- arxiv url: http://arxiv.org/abs/2410.02819v1
- Date: Wed, 25 Sep 2024 07:52:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:34:38.655638
- Title: Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems
- Title(参考訳): PDEのための物理インフォームドグラフメシュネットワーク:複雑な問題に対するハイブリッドアプローチ
- Authors: Marien Chenaud, Frédéric Magoulès, José Alves,
- Abstract要約: 物理インフォームドグラフニューラルネットワークと有限要素からの数値カーネルを組み合わせたハイブリッドアプローチを提案する。
モデルの理論的性質を研究した後、2次元と3次元の複素幾何学に応用する。
我々の選択はアブレーション研究によって支持され,提案手法の一般化能力を評価する。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent rise of deep learning has led to numerous applications, including solving partial differential equations using Physics-Informed Neural Networks. This approach has proven highly effective in several academic cases. However, their lack of physical invariances, coupled with other significant weaknesses, such as an inability to handle complex geometries or their lack of generalization capabilities, make them unable to compete with classical numerical solvers in industrial settings. In this work, a limitation regarding the use of automatic differentiation in the context of physics-informed learning is highlighted. A hybrid approach combining physics-informed graph neural networks with numerical kernels from finite elements is introduced. After studying the theoretical properties of our model, we apply it to complex geometries, in two and three dimensions. Our choices are supported by an ablation study, and we evaluate the generalisation capacity of the proposed approach.
- Abstract(参考訳): 近年のディープラーニングの台頭は、物理インフォームドニューラルネットワークを用いた偏微分方程式の解法など、多くの応用につながっている。
このアプローチはいくつかの学術ケースで非常に効果的であることが証明されている。
しかし、それらの物理的不変性の欠如は、複雑な測地を扱うことができないことや一般化能力の欠如など他の重大な弱点と相まって、産業環境で古典的な数値解法と競合することができない。
本稿では,物理インフォームドラーニングの文脈における自動微分の利用に関する制限について述べる。
物理インフォームドグラフニューラルネットワークと有限要素からの数値カーネルを組み合わせたハイブリッドアプローチを提案する。
モデルの理論的性質を研究した後、2次元と3次元の複素幾何学に応用する。
我々の選択はアブレーション研究によって支持され,提案手法の一般化能力を評価する。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
本研究は、複雑な物理系を管理する時間領域偏微分方程式(PDE)の数値解析を高速化するための新しいアプローチを導入する。
この手法は、古典的低次モデリング(ROM)フレームワークと最近のパラメトリックグラフニューラルネットワーク(GNN)の組み合わせに基づいている。
論文 参考訳(メタデータ) (2024-06-03T08:51:25Z) - Separable Physics-Informed Neural Networks for the solution of
elasticity problems [0.0]
深部エネルギー法(DEM)と連動して、分離可能な物理情報ニューラルネットワーク(SPINN)に基づく弾性問題の解法を提案する。
数値実験により、この手法はバニラ物理情報ニューラルネットワーク(PINN)やSPINNよりもはるかに高い収束率と精度を有することが示された。
論文 参考訳(メタデータ) (2024-01-24T14:34:59Z) - Physics-Informed Graph Convolutional Networks: Towards a generalized
framework for complex geometries [0.0]
偏微分方程式の解法としてグラフニューラルネットワークを用いることを正当化する。
古典的数値解法と物理インフォームド・フレームワークを組み合わせることで、別の手法を提案する。
本稿では,不規則な幾何学上の3次元問題に対して検証を行う手法を提案する。
論文 参考訳(メタデータ) (2023-10-20T09:46:12Z) - An Analysis of Physics-Informed Neural Networks [0.0]
我々は物理システム – 物理インフォームドニューラルネットワーク – に対する解を近似する新しいアプローチを提案する。
人工ニューラルネットワークの概念を導入し、目的関数を定義し、最適化戦略について議論する。
偏微分方程式は、問題の損失関数の制約として含まれ、ネットワークがモデリングしている物理系の力学の知識にアクセスできる。
論文 参考訳(メタデータ) (2023-03-06T04:45:53Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。