論文の概要: MMPDE-Net and Moving Sampling Physics-informed Neural Networks Based On
Moving Mesh Method
- arxiv url: http://arxiv.org/abs/2311.16167v1
- Date: Tue, 14 Nov 2023 19:43:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-03 13:04:32.519276
- Title: MMPDE-Net and Moving Sampling Physics-informed Neural Networks Based On
Moving Mesh Method
- Title(参考訳): 移動メッシュ法に基づくmmpde-netと移動サンプリング物理形ニューラルネットワーク
- Authors: Yu Yang, Qihong Yang, Yangtao Deng, Qiaolin He
- Abstract要約: 移動メッシュPDE法に基づくエンドツーエンド適応サンプリングニューラルネットワーク(MMPDE-Net)を提案する。
我々は,MMPDE-Netに基づく反復アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 4.872495047489213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose an end-to-end adaptive sampling neural network
(MMPDE-Net) based on the moving mesh PDE method, which can adaptively generate
new coordinates of sampling points by solving the moving mesh PDE. This model
focuses on improving the efficiency of individual sampling points. Moreover, we
have developed an iterative algorithm based on MMPDE-Net, which makes the
sampling points more precise and controllable. Since MMPDE-Net is a framework
independent of the deep learning solver, we combine it with PINN to propose
MS-PINN and demonstrate its effectiveness by performing error analysis under
the assumptions given in this paper. Meanwhile, we demonstrate the performance
improvement of MS-PINN compared to PINN through numerical experiments on four
typical examples to verify the effectiveness of our method.
- Abstract(参考訳): 本研究では,移動メッシュPDE法に基づくエンドツーエンド適応サンプリングニューラルネットワーク(MMPDE-Net)を提案する。
このモデルは個々のサンプリングポイントの効率を改善することに焦点を当てている。
さらに,mmpde-netに基づく反復アルゴリズムを開発し,サンプリング点の精度と制御性が向上した。
mmpde-netはディープラーニングソルバとは無関係なフレームワークであるので,これをpinnと組み合わせ,ms-pinnを提案し,本論文で提示した仮定の下でエラー解析を行い,その効果を実証する。
一方,本手法の有効性を検証するために,4つの典型例の数値実験により,MS-PINNとPINNを比較した。
関連論文リスト
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - SGM-PINN: Sampling Graphical Models for Faster Training of Physics-Informed Neural Networks [4.262342157729123]
SGM-PINNは物理情報ニューラルネットワーク(PINN)のトレーニング効率を向上させるグラフベースの重要度サンプリングフレームワークである
提案手法の利点を実証し,従来の最先端サンプリング手法と比較して3倍の収束性を実現した。
論文 参考訳(メタデータ) (2024-07-10T04:31:50Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach [10.250994619846416]
段階的強化(GB)と呼ばれる新しい訓練パラダイムを提案する。
与えられたPDEの解を1つのニューラルネットワークで直接学習する代わりに、我々のアルゴリズムは、より優れた結果を得るために、一連のニューラルネットワークを用いています。
この研究は、PINNでアンサンブル学習技術を採用するための扉も開ける。
論文 参考訳(メタデータ) (2023-02-25T19:11:44Z) - A Novel Adaptive Causal Sampling Method for Physics-Informed Neural
Networks [35.25394937917774]
インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の解を得るための魅力的な機械学習手法である。
適応サンプリングに時間因果性を導入し,PINの性能と効率を向上させるための適応因果サンプリング手法を提案する。
本研究では, 比較的単純なサンプリング手法を用いることで, 予測性能を2桁まで向上できることを実証した。
論文 参考訳(メタデータ) (2022-10-24T01:51:08Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Graph Neural Networks for Massive MIMO Detection [8.516590865173407]
我々は,無線通信におけるMIMO(Multiple-input multiple-output)検出の推測タスクに対するメッセージパッシングソリューションを学習する。
我々は、マルコフ確率場(MRF)に基づくグラフィカルモデルを採用し、送信されたシンボルに対して一様であると仮定すると、信念伝播(BP)が貧弱な結果をもたらす。
論文 参考訳(メタデータ) (2020-07-11T07:34:56Z) - MOPS-Net: A Matrix Optimization-driven Network forTask-Oriented 3D Point
Cloud Downsampling [86.42733428762513]
MOPS-Netは行列最適化のための新しい解釈可能な深層学習手法である。
我々はMOPS-Netが様々なタスクに対して最先端の深層学習手法に対して好適な性能が得られることを示す。
論文 参考訳(メタデータ) (2020-05-01T14:01:53Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
論文 参考訳(メタデータ) (2020-02-14T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。