論文の概要: Further improving quantum algorithms for nonlinear differential
equations via higher-order methods and rescaling
- arxiv url: http://arxiv.org/abs/2312.09518v1
- Date: Fri, 15 Dec 2023 03:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 17:12:31.245214
- Title: Further improving quantum algorithms for nonlinear differential
equations via higher-order methods and rescaling
- Title(参考訳): 高次法と再スケーリングによる非線形微分方程式の量子アルゴリズムの改善
- Authors: Pedro C. S. Costa, Philipp Schleich, Mauro E. S. Morales, and Dominic
W. Berry
- Abstract要約: 本稿では,Carleman線形化法に基づく既存量子アルゴリズムの3つの改良点について述べる。
線形化微分方程式の解法として高精度な手法を用いることで,誤差の対数的依存性と時間的近線形依存性を実現する。
再スケーリング技術はコストを大幅に削減し、そうでなければODEのシステムに対するCarleman順序で指数関数的になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The solution of large systems of nonlinear differential equations is needed
for many applications in science and engineering. In this study, we present
three main improvements to existing quantum algorithms based on the Carleman
linearisation technique. First, by using a high-precision technique for the
solution of the linearised differential equations, we achieve logarithmic
dependence of the complexity on the error and near-linear dependence on time.
Second, we demonstrate that a rescaling technique can considerably reduce the
cost, which would otherwise be exponential in the Carleman order for a system
of ODEs, preventing a quantum speedup for PDEs. Third, we provide improved,
tighter bounds on the error of Carleman linearisation. We apply our results to
a class of discretised reaction-diffusion equations using higher-order finite
differences for spatial resolution. We show that providing a stability
criterion independent of the discretisation can conflict with the use of the
rescaling due to the difference between the max-norm and 2-norm. An efficient
solution may still be provided if the number of discretisation points is
limited, as is possible when using higher-order discretisations.
- Abstract(参考訳): 非線形微分方程式の大規模系の解は、科学や工学の多くの応用に必要である。
本研究では,Carleman線形化法に基づく既存量子アルゴリズムの3つの改良点について述べる。
まず,線形化微分方程式の解法として高精度な手法を用いることで,誤差の対数的依存性と時間的近線形依存性を実現する。
第二に、再スケーリング技術がコストを大幅に削減できることを示し、それ以外は、ODEのシステムに対するCarleman順序で指数関数的であり、PDEの量子スピードアップを防ぐ。
第3に、Carleman線型化の誤差を改良し、より厳密な境界を提供する。
本研究では,空間分解能の高次有限差分を用いた離散化反応拡散方程式のクラスに適用する。
離散化に依存しない安定性基準を提供することは、maxノルムと2ノルムの違いによる再スケーリングの使用と矛盾する可能性がある。
離散化点の数が制限されている場合、高次微分を用いても、効率的な解が得られる。
関連論文リスト
- Variational Quantum Framework for Nonlinear PDE Constrained Optimization Using Carleman Linearization [0.8704964543257243]
非線形偏微分方程式(PDE)制約最適化問題に対する新しい変分量子フレームワークを提案する。
我々はカールマン線形化(CL)を用いて、通常の微分方程式の系をODEの無限だが線型な系に変換する。
計算誤差と複雑性の詳細な解析を行い、適切な仮定の下では、提案するフレームワークが古典的手法よりも潜在的に有利であることを示す。
論文 参考訳(メタデータ) (2024-10-17T15:51:41Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
本稿では、Fokker-Planck方程式(FPE)を用いて非線形微分方程式(SDE)を解くための効率的な量子アルゴリズムを提案する。
空間と時間におけるFPEを2つのよく知られた数値スキーム、すなわち Chang-Cooper と暗黙の有限差分を用いて識別する。
次に、量子線型系を用いて線形方程式の結果の解を計算する。
論文 参考訳(メタデータ) (2023-03-04T17:40:23Z) - Time-marching based quantum solvers for time-dependent linear
differential equations [3.1952399274829775]
タイムマーチング戦略は、古典コンピュータ上の時間依存微分方程式を解く自然な戦略である。
時間マーチングに基づく量子解法は、時間ステップ数に関して指数関数的に成功確率を逸脱させる可能性があることを示す。
これは、量子線型系アルゴリズムに基づくものに代わる量子微分方程式の解法を設計する道を提供する。
論文 参考訳(メタデータ) (2022-08-14T23:49:19Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
量子カーネル法を用いて微分方程式(DE)の解法を提案する。
量子モデルをカーネル関数の重み付け和として構成し、特徴写像を用いて変数を符号化し、モデル微分を表現する。
論文 参考訳(メタデータ) (2022-03-16T18:56:35Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。