論文の概要: Contribution Functions for Quantitative Bipolar Argumentation Graphs: A Principle-based Analysis
- arxiv url: http://arxiv.org/abs/2401.08879v2
- Date: Thu, 13 Jun 2024 22:07:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 19:14:16.745896
- Title: Contribution Functions for Quantitative Bipolar Argumentation Graphs: A Principle-based Analysis
- Title(参考訳): 定量的双極子配置グラフの寄与関数:原理に基づく分析
- Authors: Timotheus Kampik, Nico Potyka, Xiang Yin, Kristijonas Čyras, Francesca Toni,
- Abstract要約: 定量的双極性議論グラフに対する寄与関数の原理に基づく解析について述べる。
導入された原理は、貢献関数の振る舞いに関する期待と同様に、様々な貢献関数の根底にある直観を定式化する。
- 参考スコア(独自算出の注目度): 15.789400120565274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a principle-based analysis of contribution functions for quantitative bipolar argumentation graphs that quantify the contribution of one argument to another. The introduced principles formalise the intuitions underlying different contribution functions as well as expectations one would have regarding the behaviour of contribution functions in general. As none of the covered contribution functions satisfies all principles, our analysis can serve as a tool that enables the selection of the most suitable function based on the requirements of a given use case.
- Abstract(参考訳): 本稿では、ある引数の他の引数への寄与を定量化する量的双極性議論グラフに対する寄与関数の原理に基づく解析について述べる。
導入された原理は、貢献関数の振る舞いに関する期待と同様に、様々な貢献関数の根底にある直観を定式化する。
カバーされたコントリビューション機能はいずれもすべての原則を満たすものではないため、我々の分析は、与えられたユースケースの要求に基づいて最も適切な関数の選択を可能にするツールとして機能する。
関連論文リスト
- Two-Stage Nuisance Function Estimation for Causal Mediation Analysis [8.288031125057524]
媒介関数の作用関数に基づく推定器のバイアスの構造において,それらが果たす役割に基づいてニュアンス関数を推定する2段階推定手法を提案する。
本稿では,提案手法の解析と,関心パラメータの推定器の整合性と正規性に関する十分な条件について述べる。
論文 参考訳(メタデータ) (2024-03-31T16:38:48Z) - Statistical Inference of Optimal Allocations I: Regularities and their Implications [3.904240476752459]
まず、ソート作用素の一般性質の詳細な解析を通して、値関数のアダマール微分可能性(英語版)を導出する。
アダマール微分可能性の結果に基づいて、関数デルタ法を用いて値関数プロセスの特性を直接導出する方法を実証する。
論文 参考訳(メタデータ) (2024-03-27T04:39:13Z) - On the estimation of the number of components in multivariate functional principal component analysis [0.0]
保持する主成分の数の選定を検討するため, 広範囲なシミュレーションを行った。
本研究では,各単変量機能特徴に対する分散説明しきい値のパーセンテージを用いた従来の手法は信頼性が低いことを示す。
論文 参考訳(メタデータ) (2023-11-08T09:05:42Z) - Axiomatic characterization of pointwise Shapley decompositions [0.0]
様々な応用における一般的な問題は、入力変数に対する関数の出力の加法分解である。
本稿では,関数構造を完全に保存し,ボレル可測関数を一意に分解する公理を開発した。
論文 参考訳(メタデータ) (2023-03-14T10:24:48Z) - Special functions in quantum phase estimation [61.12008553173672]
一つは球面波動関数のプロレーションであり、これは真パラメータと推定値の差が一定の閾値より小さい最大確率を与える。
もう1つはマチュー関数であり、エネルギー制約の下での最適推定を正確に与えている。
論文 参考訳(メタデータ) (2023-02-14T08:33:24Z) - Refining and relating fundamentals of functional theory [0.0]
ここでは、なぜ6つの同値な普遍汎函数が存在するのかを説明し、それらの間の簡潔な関係を証明し、$v$-representability の重要な概念は変数のスコープと選択に相対的であると結論付ける。
時間反転対称性を持つ系に対して、なぜ6つの同値な普遍汎函数が存在するのかを説明し、それらの間の簡潔な関係を証明し、$v$-表現可能性の重要な概念は変数のスコープと選択に相対的であると結論付ける。
論文 参考訳(メタデータ) (2023-01-24T18:09:47Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Inference on Strongly Identified Functionals of Weakly Identified
Functions [71.42652863687117]
本研究では,ニュアンス関数が存在しない場合でも,関数を強く識別するための新しい条件について検討する。
本稿では,プライマリおよびデバイアスのニュアンス関数に対するペナル化ミニマックス推定器を提案する。
論文 参考訳(メタデータ) (2022-08-17T13:38:31Z) - Provable General Function Class Representation Learning in Multitask
Bandits and MDPs [58.624124220900306]
マルチタスク表現学習は、サンプル効率を高めるために強化学習において一般的なアプローチである。
本研究では,解析結果を一般関数クラス表現に拡張する。
バンディットと線形MDPの一般関数クラスにおけるマルチタスク表現学習の利点を理論的に検証する。
論文 参考訳(メタデータ) (2022-05-31T11:36:42Z) - Learning PSD-valued functions using kernel sums-of-squares [94.96262888797257]
PSDコーンの値を取る関数に対して,カーネルの総和モデルを導入する。
PSD関数の普遍近似を構成することを示し、サブサンプル等式制約の場合の固有値境界を導出する。
次に、この結果を凸関数のモデル化に応用し、ヘッセンのカーネル和-二乗表現を強制する。
論文 参考訳(メタデータ) (2021-11-22T16:07:50Z) - Deformed Explicitly Correlated Gaussians [58.720142291102135]
変形相関ガウス基底関数を導入し、それらの行列要素を算出する。
これらの基底関数は非球面ポテンシャルの問題を解くのに使うことができる。
論文 参考訳(メタデータ) (2021-08-10T18:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。