論文の概要: Minimality in Finite-Dimensional ZW-Calculi
- arxiv url: http://arxiv.org/abs/2401.16225v2
- Date: Mon, 16 Sep 2024 15:21:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 03:05:43.328597
- Title: Minimality in Finite-Dimensional ZW-Calculi
- Title(参考訳): 有限次元ZW-カルキュリーの最小性
- Authors: Marc de Visme, Renaud Vilmart,
- Abstract要約: ZW-計算(ZW-calculus)は、2次元量子系(量子ビット)を図形で表すことができるグラフィカル言語である。
形式主義を拡張して、有限次元ヒルベルト空間を qubit 系を超えて取り込む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ZW-calculus is a graphical language capable of representing 2-dimensional quantum systems (qubit) through its diagrams, and manipulating them through its equational theory. We extend the formalism to accommodate finite dimensional Hilbert spaces beyond qubit systems. First we define a qu$d$it version of the language, where all systems have the same arbitrary finite dimension $d$, and show that the provided equational theory is both complete -- i.e. semantical equivalence is entirely captured by the equations -- and minimal -- i.e. none of the equations are consequences of the others. We then extend the graphical language further to allow for mixed-dimensional systems. We again show the completeness and minimality of the provided equational theory.
- Abstract(参考訳): ZW-計算(ZW-calculus)は、2次元量子系(量子ビット)を図式で表し、方程式理論でそれらを操作できるグラフィカル言語である。
形式主義を拡張して、有限次元ヒルベルト空間を qubit 系を超えて取り込む。
まず、全ての系が同じ任意の有限次元の$d$を持つような言語のqu$d$itバージョンを定義し、与えられた方程式理論が完備であることを示す。
そして、さらにグラフィカル言語を拡張して、混合次元システムを可能にします。
ここでも、与えられた方程式理論の完全性と最小性を示す。
関連論文リスト
- ZX-calculus is Complete for Finite-Dimensional Hilbert Spaces [0.09831489366502298]
ZX計算(ZX-calculus)は、量子コンピューティングと量子情報理論のためのグラフィカル言語である。
有限次元ZX-計算の完全性を証明し、混合次元Z-スパイダーとqudit X-スパイダーのみをジェネレータとして組み込む。
我々のアプローチは、他のグラフィカル言語である有限次元ZW-計算の完全性に基づいており、これら2つの計算間の直接変換が可能である。
論文 参考訳(メタデータ) (2024-05-17T16:35:07Z) - Completeness of qufinite ZXW calculus, a graphical language for
finite-dimensional quantum theory [0.11049608786515838]
有限次元量子論を推論するためのグラフィカル言語ZXW法則を導入する。
この計算の完全性は、任意の定値なZXWダイアグラムが正規形式に書き換えられることを示すことで証明する。
我々の研究は、量子物理学の包括的な図式記述の道を開き、この分野の扉を広く一般に開放する。
論文 参考訳(メタデータ) (2023-09-22T17:23:58Z) - Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying
calculus [0.2348805691644085]
ZX-計算(ZX-calculus)は、量子ビット計算のための普遍的なグラフィカル言語である。
ZW-計算(ZW-calculus)は、量子ビット量子コンピューティングでも完備な、汎用的なグラフィカル言語である。
これら2つの計算を組み合わせることで、量子ビット量子計算のための新しい計算、ZXW-計算が誕生した。
論文 参考訳(メタデータ) (2023-02-23T16:18:57Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
ボゾン系が環境との相互作用を含むように一般化されたとき、有限$n$で正確な対応も可能であることを示す。
離散非線形シュル「オーディンガー方程式」の形をした特定の系をより詳細に分析する。
論文 参考訳(メタデータ) (2023-02-03T19:17:37Z) - Qudit lattice surgery [91.3755431537592]
我々は、フォールトトレラント量子ビット計算のモデルである格子手術が、任意の有限次元量子ビットに直接一般化することを観察する。
我々は、このモデルをホップ・フロベニウス代数に基づく図形言語であるZX-計算に関連付ける。
論文 参考訳(メタデータ) (2022-04-27T23:41:04Z) - LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits [58.720142291102135]
線形光量子回路を推論するグラフィカル言語LOv-calculusを導入する。
2つのLOv-回路が同じ量子過程を表すのは、LOv-計算の規則で一方を他方に変換できる場合に限る。
論文 参考訳(メタデータ) (2022-04-25T16:59:26Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
開量子系は、FGKLS(Franke-Gorini-Kossakowski-Lindblad-Sudarshan)方程式に従うことができる。
我々はヒルベルト空間次元が 2$ である場合を徹底的に研究する。
論文 参考訳(メタデータ) (2022-04-16T07:03:54Z) - Quantum double aspects of surface code models [77.34726150561087]
基礎となる量子double $D(G)$対称性を持つ正方格子上でのフォールトトレラント量子コンピューティングの北エフモデルを再検討する。
有限次元ホップ代数$H$に基づいて、我々の構成がどのように$D(H)$モデルに一般化するかを示す。
論文 参考訳(メタデータ) (2021-06-25T17:03:38Z) - AKLT-states as ZX-diagrams: diagrammatic reasoning for quantum states [1.1470070927586016]
ZXH計算(ZXH-calculus)は、多体状態を完全にグラフィカルに表現し、推論するために使用するグラフィカル言語である。
本稿では,AKLT行列生成状態表現の回復,位相的に保護されたエッジ状態の存在,文字列順序パラメータの非消滅について述べる。
また、六角格子上の2次元 AKLT 状態がグラフ状態に還元できることを証明し、それが普遍的な量子コンピューティング資源であることを証明した。
論文 参考訳(メタデータ) (2020-12-02T14:03:27Z) - On a recipe for quantum graphical languages [0.0]
Z*-代数を2次元ヒルベルト空間の同型に分類し、これらが上記の計算のすべてのバリエーションであることを示す。
線形関係についても同様に行い、[2] の計算が本質的に一意なものであることを示す。
論文 参考訳(メタデータ) (2020-08-10T15:26:08Z) - PBS-Calculus: A Graphical Language for Coherent Control of Quantum
Computations [77.34726150561087]
本稿では,量子演算のコヒーレント制御を含む量子計算を表現・推論するためにPBS計算を導入する。
我々はこの言語に方程式理論を加え、それが健全で完備であることが証明された。
我々は、制御された置換の実装やループのアンロールのようなアプリケーションを考える。
論文 参考訳(メタデータ) (2020-02-21T16:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。