論文の概要: Neural Differential Algebraic Equations
- arxiv url: http://arxiv.org/abs/2403.12938v1
- Date: Tue, 19 Mar 2024 17:43:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:14:11.356812
- Title: Neural Differential Algebraic Equations
- Title(参考訳): ニューラル微分代数方程式
- Authors: James Koch, Madelyn Shapiro, Himanshu Sharma, Draguna Vrabie, Jan Drgona,
- Abstract要約: 微分代数方程式(DAE)のデータ駆動モデリングに適したニューラル微分代数方程式(NDAE)を提案する。
提案したNDAEs抽象化は、関連するシステム理論データ駆動モデリングタスクに適していることを示す。
- 参考スコア(独自算出の注目度): 6.100037457394823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential-Algebraic Equations (DAEs) describe the temporal evolution of systems that obey both differential and algebraic constraints. Of particular interest are systems that contain implicit relationships between their components, such as conservation relationships. Here, we present Neural Differential-Algebraic Equations (NDAEs) suitable for data-driven modeling of DAEs. This methodology is built upon the concept of the Universal Differential Equation; that is, a model constructed as a system of Neural Ordinary Differential Equations informed by theory from particular science domains. In this work, we show that the proposed NDAEs abstraction is suitable for relevant system-theoretic data-driven modeling tasks. Presented examples include (i) the inverse problem of tank-manifold dynamics and (ii) discrepancy modeling of a network of pumps, tanks, and pipes. Our experiments demonstrate the proposed method's robustness to noise and extrapolation ability to (i) learn the behaviors of the system components and their interaction physics and (ii) disambiguate between data trends and mechanistic relationships contained in the system.
- Abstract(参考訳): 微分代数方程式(英: Differential-Algebraic Equations、DAEs)は、微分と代数の両方の制約に従う系の時間的進化を記述する方程式である。
特に興味深いのは、保護関係のようなコンポーネント間の暗黙の関係を含むシステムである。
本稿では,DAEのデータ駆動モデリングに適したニューラル微分代数方程式(NDAE)を提案する。
この方法論は、普遍微分方程式(Universal Differential Equation)の概念に基づいて構築され、すなわち、特定の科学領域から理論によって情報を得るニューラル正規微分方程式の体系として構築されるモデルである。
本研究では,提案したNDAEの抽象化が,関連するシステム理論データ駆動モデリングタスクに適していることを示す。
以下に示す例を挙げる。
一 タンク・マニフォールド力学及び逆問題
二 ポンプ、タンク及びパイプのネットワークの相違モデル
提案手法の雑音に対する頑健さと外挿能力を示す実験を行った。
一 システムコンポーネントとその相互作用物理の挙動を学習し、
(2)システムに含まれるデータトレンドと機械的関係の曖昧さ。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - On Neural Differential Equations [13.503274710499971]
特に、ニューラル微分方程式(NDE)は、ニューラルネットワークと微分方程式が同じコインの両側であることを示す。
NDEは生成問題、動的システム、時系列を扱うのに適している。
NDEは高容量関数近似、モデル空間への強い先行性、不規則なデータを扱う能力、メモリ効率、そして両サイドで利用可能な豊富な理論を提供する。
論文 参考訳(メタデータ) (2022-02-04T23:32:29Z) - Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE [1.1897857181479061]
本研究では、物理システムの隠れた力学を学習できる畳み込みニューラルネットワーク(CNN)の変種を提案する。
画像や時系列などの物理系を複数の層からなるシステムとして考えるのではなく、微分方程式(DE)の形でシステムをモデル化することができる。
論文 参考訳(メタデータ) (2021-10-30T21:45:00Z) - Multi-objective discovery of PDE systems using evolutionary approach [77.34726150561087]
本稿では,多目的共進化アルゴリズムについて述べる。
システム内の単一の方程式とシステム自体が同時に進化し、システムを得る。
単一のベクトル方程式とは対照的に、コンポーネント・ワイド・システムは専門家の解釈により適しており、従って応用にも適している。
論文 参考訳(メタデータ) (2021-03-11T15:37:52Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
本研究は, 偏微分方程式(PDE)を, 希少かつノイズの多い表現データから検出する物理インフォームド・ディープラーニング・フレームワークを提案する。
本手法の有効性とロバスト性は, 数値的にも実験的にも, 種々のPDEシステムの発見において実証される。
結果として得られる計算フレームワークは、実用的な応用における閉形式モデル発見の可能性を示している。
論文 参考訳(メタデータ) (2020-05-05T22:13:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。