論文の概要: Quantum algorithms to simulate quadratic classical Hamiltonians and optimal control
- arxiv url: http://arxiv.org/abs/2404.07303v1
- Date: Wed, 10 Apr 2024 18:53:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:48:02.408530
- Title: Quantum algorithms to simulate quadratic classical Hamiltonians and optimal control
- Title(参考訳): 二次古典ハミルトニアンをシミュレートする量子アルゴリズムと最適制御
- Authors: Hari Krovi,
- Abstract要約: 量子アルゴリズムを用いて,古典力学系における興味量を推定する。
古典システムの最適制御を設計する問題は、ラグランジアンの第2変種とみなすことができる。
我々は、リカティ微分方程式を非線形状態にうまく解くための効率的な量子アルゴリズムを与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation of realistic classical mechanical systems is of great importance to many areas of engineering such as robotics, dynamics of rotating machinery and control theory. In this work, we develop quantum algorithms to estimate quantities of interest such as the kinetic energy in a given classical mechanical system in the presence of friction or damping as well as forcing or source terms, which makes the algorithm of practical interest. We show that for such systems, the quantum algorithm scales polynomially with the logarithm of the dimension of the system. We cast this problem in terms of Hamilton's equations of motion (equivalent to the first variation of the Lagrangian) and solve them using quantum algorithms for differential equations. We then consider the hardness of estimating the kinetic energy of a damped coupled oscillator system. We show that estimating the kinetic energy at a given time of this system to within additive precision is BQP hard when the strength of the damping term is bounded by an inverse polynomial in the number of qubits. We then consider the problem of designing optimal control of classical systems, which can be cast as the second variation of the Lagrangian. In this direction, we first consider the Riccati equation, which is a nonlinear differential equation ubiquitous in control theory. We give an efficient quantum algorithm to solve the Riccati differential equation well into the nonlinear regime. To our knowledge, this is the first example of any nonlinear differential equation that can be solved when the strength of the nonlinearity is asymptotically greater than the amount of dissipation. We then show how to use this algorithm to solve the linear quadratic regulator problem, which is an example of the Hamilton-Jacobi-Bellman equation.
- Abstract(参考訳): 現実的な古典力学系のシミュレーションは、ロボット工学、回転機械の力学、制御理論など多くの分野において非常に重要である。
本研究では,古典力学系において,摩擦や減衰の存在下での運動エネルギーや,強制あるいは源項の存在下での利害関係を推定する量子アルゴリズムを開発し,実用的な利害関係のアルゴリズムを提案する。
このような系に対して、量子アルゴリズムは系の次元の対数と多項式的にスケールすることを示す。
この問題をハミルトンの運動方程式(ラグランジアンの最初の変分と同値)で表現し、微分方程式の量子アルゴリズムを用いて解いた。
次に、減衰結合型発振器系の運動エネルギーを推定する難しさについて考察する。
この系の所定の時間における運動エネルギーを加法精度で推定することは、減衰項の強さが量子ビット数における逆多項式によって束縛されているとき、BQP硬くなることを示す。
次に、古典システムの最適制御を設計する問題を、ラグランジアンの第2変種とみなすことができる。
この方向では、制御理論においてユビキタスな非線形微分方程式であるリカティ方程式を考える。
我々は、リカティ微分方程式を非線形状態にうまく解くための効率的な量子アルゴリズムを与える。
我々の知る限り、これは非線形性の強さが散逸の量よりも漸近的に大きいときに解ける任意の非線形微分方程式の最初の例である。
次に、このアルゴリズムを用いて、ハミルトン・ヤコビ・ベルマン方程式の例である線形二次規制問題を解く方法を示す。
関連論文リスト
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
本稿では, 非線形常微分方程式の初期値問題を解くために, 繰り返し測定に基づく量子アルゴリズムを提案する。
古典ロジスティック系とローレンツ系に、積分可能かつカオス的条件の両方でこのアプローチを適用する。
論文 参考訳(メタデータ) (2024-10-04T18:06:12Z) - Quantum and classical algorithms for nonlinear unitary dynamics [0.5729426778193399]
我々は$fracd|urangledtという形の非線形微分方程式に対する量子アルゴリズムを提案する。
また,Euler法に基づく古典的アルゴリズムを導入し,制限された場合の量子アルゴリズムへのコンパラブルなスケーリングを実現する。
論文 参考訳(メタデータ) (2024-07-10T14:08:58Z) - The cost of solving linear differential equations on a quantum computer: fast-forwarding to explicit resource counts [0.0]
一般線型常微分方程式に対する解を量子状態に符号化するコストの非漸近計算を初めて与える。
古典力学の大規模クラスの安定性がそれらの高速なフォワードを可能にすることを示す。
ヒストリー状態は常に任意の安定線型系に対して複雑性$O(T1/2)$で出力できる。
論文 参考訳(メタデータ) (2023-09-14T17:25:43Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
本稿では,HHLアルゴリズムに基づく線形方程式系の解法を,新しい四重項法を用いて提案する。
テンソルネットワーク上で量子インスパイアされたバージョンを実行し、プロジェクションのような非単体演算を行う能力を生かした。
論文 参考訳(メタデータ) (2023-09-11T08:18:41Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - A quantum algorithm for the linear Vlasov equation with collisions [0.0]
本稿では,線形化されたフラソフ方程式を衝突や衝突なしにシミュレートする量子アルゴリズムを提案する。
システムサイズにおける二次的なスピードアップが達成可能であることを示す。
論文 参考訳(メタデータ) (2023-03-06T19:19:30Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
ボゾン系が環境との相互作用を含むように一般化されたとき、有限$n$で正確な対応も可能であることを示す。
離散非線形シュル「オーディンガー方程式」の形をした特定の系をより詳細に分析する。
論文 参考訳(メタデータ) (2023-02-03T19:17:37Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational quantum algorithm based on the minimum potential energy for
solving the Poisson equation [7.620967781722716]
ポアソン方程式を解くための変分量子アルゴリズムを提案する。
提案手法はポアソン方程式の全ポテンシャルエネルギーをハミルトニアンとして定義する。
項の数は問題の大きさとは無関係であるため、この方法は比較的少ない量子測定を必要とする。
論文 参考訳(メタデータ) (2021-06-17T09:01:53Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。