論文の概要: Quantum simulation of the Fokker-Planck equation via Schrodingerization
- arxiv url: http://arxiv.org/abs/2404.13585v1
- Date: Sun, 21 Apr 2024 08:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 18:21:27.328309
- Title: Quantum simulation of the Fokker-Planck equation via Schrodingerization
- Title(参考訳): シュロディンガー化によるフォッカー・プランク方程式の量子シミュレーション
- Authors: Shi Jin, Nana Liu, Yue Yu,
- Abstract要約: 本稿では,Fokker-Planck方程式を解くための量子シミュレーション手法について述べる。
我々はシュロディンガー化法(Schrodingerization method)を用いて、非エルミート力学を持つ任意の線型偏微分方程式と常微分方程式をシュロディンガー型方程式系に変換する。
- 参考スコア(独自算出の注目度): 33.76659022113328
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper studies a quantum simulation technique for solving the Fokker-Planck equation. Traditional semi-discretization methods often fail to preserve the underlying Hamiltonian dynamics and may even modify the Hamiltonian structure, particularly when incorporating boundary conditions. We address this challenge by employing the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations. We explore the application in two distinct forms of the Fokker-Planck equation. For the conservation form, we show that the semi-discretization-based Schrodingerization is preferable, especially when dealing with non-periodic boundary conditions. Additionally, we analyze the Schrodingerization approach for unstable systems that possess positive eigenvalues in the real part of the coefficient matrix or differential operator. Our analysis reveals that the direct use of Schrodingerization has the same effect as a stabilization procedure. For the heat equation form, we propose a quantum simulation procedure based on the time-splitting technique. We discuss the relationship between operator splitting in the Schrodingerization method and its application directly to the original problem, illustrating how the Schrodingerization method accurately reproduces the time-splitting solutions at each step. Furthermore, we explore finite difference discretizations of the heat equation form using shift operators. Utilizing Fourier bases, we diagonalize the shift operators, enabling efficient simulation in the frequency space. Providing additional guidance on implementing the diagonal unitary operators, we conduct a comparative analysis between diagonalizations in the Bell and the Fourier bases, and show that the former generally exhibits greater efficiency than the latter.
- Abstract(参考訳): 本稿では,Fokker-Planck方程式を解くための量子シミュレーション手法について述べる。
従来の半離散化法は、基礎となるハミルトン力学の保存に失敗することが多く、特に境界条件を組み込んだ場合、ハミルトン構造を変更することもある。
我々は、シュロディンガー化法(Schrodingerization method)を用いて、非エルミート力学を持つ任意の線型偏微分方程式をシュロディンガー型方程式系に変換する。
この応用をフォッカー・プランク方程式の2つの異なる形式で検討する。
保存形態について、半離散化に基づくシュロディンガー化は特に非周期境界条件を扱う際に好ましいことを示す。
さらに、係数行列や微分作用素の実部において正の固有値を持つ不安定系に対するシュロディンガー化法を解析する。
本分析により,シュロディンガー化の直接的利用は安定化法と同じ効果を有することが明らかとなった。
熱方程式の形式として,時間分割法に基づく量子シミュレーション手法を提案する。
シュロディンガー化法における演算子分割と元の問題への直接適用の関係を考察し、シュロディンガー化法が各ステップにおける時間分割解を正確に再現する方法について述べる。
さらに、シフト演算子を用いた熱方程式形式の有限差分離散化について検討する。
フーリエ基底を用いてシフト演算子を対角化し、周波数空間の効率的なシミュレーションを可能にする。
対角ユニタリ作用素の実装に関する追加のガイダンスを提供することで、ベル基底とフーリエ基底における対角化の比較分析を行い、前者は後者よりも一般に高い効率を示すことを示す。
関連論文リスト
- Schrödingerization based Quantum Circuits for Maxwell's Equation with time-dependent source terms [24.890270804373824]
本稿では, 完全導体(PEC)境界条件を持つマクスウェル方程式の量子回路を明示的に構築する。
量子アルゴリズムは、古典的有限差分時間領域(FDTD)フォーマットと比較して計算複雑性が向上していることを示す。
論文 参考訳(メタデータ) (2024-11-17T08:15:37Z) - Exact solution of the master equation for interacting quantized fields at finite temperature decay [0.0]
有限温度崩壊における2つの量子化場の相互作用を含む量子系のマルコフ力学を解析する。
我々はリンドブラッドマスター方程式を、実効的な非エルミート的ハミルトニアンを持つフォン・ノイマン様方程式に再構成する。
この方法は、完全な量子状態における任意の初期状態の進化を計算するための枠組みを提供する。
論文 参考訳(メタデータ) (2024-10-11T00:21:54Z) - A Theoretical Framework for an Efficient Normalizing Flow-Based Solution to the Electronic Schrodinger Equation [8.648660469053342]
量子力学における中心的な問題は、分子や物質に対する電子シュロディンガー方程式を解くことである。
アンザッツを用いた解法は, サンプリングが安価であるが, 必要な量子力学的性質を満足する。
論文 参考訳(メタデータ) (2024-05-28T15:42:15Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
非対称二重井戸電位の準安定最小値における相対論的スカラー場の真空崩壊について検討した。
我々は,2粒子既約(2PI)量子実効作用の非摂動的枠組みを,Nの大規模展開において次から次へと誘導する順序で採用する。
論文 参考訳(メタデータ) (2023-10-06T12:44:48Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
3つの方法全てを明示的に接続する方法で第3量子化の手法を再構成する。
まず、我々の定式化は、すべての二次ボゾンあるいはフェルミオンリンドブラディアンに存在する基本散逸対称性を明らかにする。
ボソンに対して、ウィグナー関数と特徴関数は密度行列の「波動関数」と考えることができる。
論文 参考訳(メタデータ) (2023-02-27T18:56:40Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
本稿では、閉かつオープンな2レベル量子系の制御問題について考察する。
閉系の力学は、コヒーレント制御を持つシュリンガー方程式によって支配される。
開系の力学はゴリーニ=コサコフスキー=スダルシャン=リンドブラッドのマスター方程式によって支配される。
論文 参考訳(メタデータ) (2022-05-05T09:08:03Z) - Lindblad master equations for quantum systems coupled to dissipative
bosonic modes [0.0]
力学がボソニックモードに結合する部分系に対してリンドブラッドマスター方程式を導出する。
この形式を散逸ディックモデルに適用し、原子スピンに対するリンドブラッドマスター方程式を導出する。
このマスター方程式はディック相転移を正確に予測し、正しい定常状態を与える。
論文 参考訳(メタデータ) (2022-03-07T11:21:48Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
オープン量子多体系の定常状態に存在する相転移の臨界指数を抽出するコヒーレント異常法の一般化を提案する。
論文 参考訳(メタデータ) (2021-03-12T13:16:18Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
一次元定常量子ブラソフ方程式は、エネルギーを力学変数の1つとして分析する。
量子トンネル効果が小さい半古典的な場合、無限級数解が開発される。
論文 参考訳(メタデータ) (2021-02-18T20:55:04Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Alternative quantisation condition for wavepacket dynamics in a
hyperbolic double well [0.0]
任意の高さまたは幅の双曲的二重井戸ポテンシャルの固有スペクトルと対応する固有状態を計算するための解析的アプローチを提案する。
帯域幅とピーク位置の異なる初期波のパケットを考えると,自己相関関数と準確率分布を計算する。
論文 参考訳(メタデータ) (2020-09-18T10:29:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。