論文の概要: Identifiability of Differential-Algebraic Systems
- arxiv url: http://arxiv.org/abs/2405.13818v1
- Date: Wed, 22 May 2024 16:48:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:05:13.700918
- Title: Identifiability of Differential-Algebraic Systems
- Title(参考訳): 微分代数系の同定可能性
- Authors: Arthur N. Montanari, François Lamoline, Robert Bereza, Jorge Gonçalves,
- Abstract要約: 本研究は非線形DAEを特徴とするモデルに対する新しい識別可能性試験を導入する。
我々は,様々なDAEモデルにまたがる識別可能性分析を適用し,システム識別性がセンサの選択,実験条件,モデル構造にどのように依存するかを考察した。
- 参考スコア(独自算出の注目度): 7.5929966855085755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven modeling of dynamical systems often faces numerous data-related challenges. A fundamental requirement is the existence of a unique set of parameters for a chosen model structure, an issue commonly referred to as identifiability. Although this problem is well studied for ordinary differential equations (ODEs), few studies have focused on the more general class of systems described by differential-algebraic equations (DAEs). Examples of DAEs include dynamical systems with algebraic equations representing conservation laws or approximating fast dynamics. This work introduces a novel identifiability test for models characterized by nonlinear DAEs. Unlike previous approaches, our test only requires prior knowledge of the system equations and does not need nonlinear transformation, index reduction, or numerical integration of the DAEs. We employed our identifiability analysis across a diverse range of DAE models, illustrating how system identifiability depends on the choices of sensors, experimental conditions, and model structures. Given the added challenges involved in identifying DAEs when compared to ODEs, we anticipate that our findings will have broad applicability and contribute significantly to the development and validation of data-driven methods for DAEs and other structure-preserving models.
- Abstract(参考訳): 動的システムのデータ駆動モデリングは、しばしば多くのデータ関連の課題に直面します。
基本的な要件は、選択されたモデル構造に対する一意のパラメータセットの存在である。
この問題は通常の微分方程式(ODE)に対してよく研究されているが、微分代数方程式(DAE)によって記述されるより一般的なシステムのクラスに焦点を当てた研究はほとんどない。
DAEの例としては、保存則を表す代数方程式を持つ力学系や高速力学の近似がある。
本研究は非線形DAEを特徴とするモデルに対する新しい識別可能性試験を導入する。
従来の手法とは異なり、我々のテストではシステム方程式の事前知識しか必要とせず、非線形変換やインデックス縮小、DAEの数値積分は必要としない。
我々は,様々なDAEモデルに対して,センサの選択,実験条件,モデル構造に依存するシステムの識別可能性について検討した。
ODEと比較してDAEを識別する上での課題が加わったことを考えると、我々の発見は広範囲に適用可能であり、DAEやその他の構造保存モデルのためのデータ駆動手法の開発と検証に大きく貢献すると予想される。
関連論文リスト
- Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification [4.804365706049767]
我々は、低次モデル(ROM)を構築するためのデータ駆動型非侵入型フレームワークを提案する。
詳細は、縮小座標の分布を特定するための変分SINIで構成されている。
トレーニングされたオフラインで、特定されたモデルは、新しいパラメータインスタンスと、対応するフルタイムソリューションを計算するための新しい初期条件のためにクエリすることができる。
論文 参考訳(メタデータ) (2024-05-31T15:16:48Z) - Neural Differential Algebraic Equations [6.100037457394823]
微分代数方程式(DAE)のデータ駆動モデリングに適したニューラル微分代数方程式(NDAE)を提案する。
提案したNDAEs抽象化は、関連するシステム理論データ駆動モデリングタスクに適していることを示す。
論文 参考訳(メタデータ) (2024-03-19T17:43:57Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - $Φ$-DVAE: Physics-Informed Dynamical Variational Autoencoders for Unstructured Data Assimilation [3.2873782624127843]
物理インフォームドな動的変分オートエンコーダ(Phi$-DVAE)を開発し、様々なデータストリームを時間進化物理系に埋め込む。
我々の手法は、非構造化データを潜在力学系に同化するために、潜在状態空間モデルのための標準的な非線形フィルタとVOEを組み合わせたものである。
変分ベイズフレームワークは、符号化、潜時状態、未知のシステムパラメータの合同推定に使用される。
論文 参考訳(メタデータ) (2022-09-30T17:34:48Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。