論文の概要: Artificial Intelligence in Everyday Life 2.0: Educating University Students from Different Majors
- arxiv url: http://arxiv.org/abs/2406.11865v1
- Date: Fri, 12 Apr 2024 08:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 07:30:49.453477
- Title: Artificial Intelligence in Everyday Life 2.0: Educating University Students from Different Majors
- Title(参考訳): 毎日のAI 2.0: 大学生をさまざまな専攻者から教育する
- Authors: Maria Kasinidou, Styliani Kleanthous, Matteo Busso, Marcelo Rodas, Jahna Otterbacher, Fausto Giunchiglia,
- Abstract要約: それらの能力、限界、関連する利点と欠点に関する誤解が広まっています。
本経験報告では,異なる専攻の学生に提供した入門講座の概要について述べる。
授業の課題とクイズについて議論し,AIプロセスの初歩的な経験を学生に提供する。
- 参考スコア(独自算出の注目度): 8.282180585560928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the surge in data-centric AI and its increasing capabilities, AI applications have become a part of our everyday lives. However, misunderstandings regarding their capabilities, limitations, and associated advantages and disadvantages are widespread. Consequently, in the university setting, there is a crucial need to educate not only computer science majors but also students from various disciplines about AI. In this experience report, we present an overview of an introductory course that we offered to students coming from different majors. Moreover, we discuss the assignments and quizzes of the course, which provided students with a firsthand experience of AI processes and insights into their learning patterns. Additionally, we provide a summary of the course evaluation, as well as students' performance. Finally, we present insights gained from teaching this course and elaborate on our future plans.
- Abstract(参考訳): データ中心のAIの急増と、その能力の増大により、AIアプリケーションは私たちの日々の生活の一部になっている。
しかし、その能力、限界、関連する利点や欠点に関する誤解が広まっています。
したがって、大学環境では、コンピュータサイエンス専攻だけでなく、AIに関する様々な分野の学生も教育する必要がある。
本経験報告では,異なる専攻の学生に提供した入門講座の概要について述べる。
さらに,授業の課題とクイズについて議論し,AIプロセスの初歩的な経験と学習パターンに対する洞察を提供する。
さらに,授業評価の要約と,学生の成績について述べる。
最後に、このコースの教えから得られた洞察と、今後の計画について詳しく述べます。
関連論文リスト
- Visions of a Discipline: Analyzing Introductory AI Courses on YouTube [11.209406323898019]
われわれはYouTubeで最も視聴された20のAIコースを分析した。
導入型AIコースは、AIの倫理的または社会的課題に有意義に関わっていない。
我々は、よりバランスのとれた視点を示すために、AIの倫理的課題を強調しておくことを推奨する。
論文 参考訳(メタデータ) (2024-05-31T01:48:42Z) - I would love this to be like an assistant, not the teacher: a voice of the customer perspective of what distance learning students want from an Artificial Intelligence Digital Assistant [0.0]
本研究では,仮想AIデジタルアシスタント(AIDA)の設計に関する10人のオンライン・遠隔学習学生の認識について検討した。
参加者全員が、リアルタイムのアシストとクエリの解決、学術的なタスクのサポート、パーソナライゼーションとアクセシビリティのサポート、そして感情的および社会的サポートにAIツールを使用することのメリットを研究し、報告しながら、そのようなAIツールの有用性について同意した。
学生の懸念は、AIDA、データプライバシとデータ利用、運用上の課題、学術的完全性と誤用、教育の将来に関する倫理的・社会的意味に関するものである。
論文 参考訳(メタデータ) (2024-02-16T08:10:41Z) - Understanding Teacher Perspectives and Experiences after Deployment of
AI Literacy Curriculum in Middle-school Classrooms [12.35885897302579]
我々は,MIT RAICAカリキュラムのモジュール実装にともなう7人の教師の経験を考察した。
我々の分析は、AIモジュールが、この分野における教師の知識を拡大したことを示唆している。
私たちの教師は、技術資源をナビゲートする際に、より良い外部支援の必要性を主張しました。
論文 参考訳(メタデータ) (2023-12-08T05:36:16Z) - What Students Can Learn About Artificial Intelligence -- Recommendations
for K-12 Computing Education [0.0]
デジタルトランスフォーメーションの文脈における技術進歩は、人工知能(AI)分野における急速な発展の基礎である
AIのトピックを含むように、コンピュータサイエンスカリキュラムの数が増えている。
本稿では,デジタルリテラシーと社会的視点に対処する学習目的のカリキュラムを提案する。
論文 参考訳(メタデータ) (2023-05-10T20:39:43Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
アラブ首長国連邦(UAE)のビジネスエグゼクティブにAIコースを教える経験報告を提示する。
理論的、技術的な側面にのみ焦点をあてるのではなく、学生が既存のビジネスプロセスにAIを組み込む方法を理解するためにAIを教えるコースを開発しました。
論文 参考訳(メタデータ) (2022-02-02T20:59:53Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。