論文の概要: The Impact of AI on Perceived Job Decency and Meaningfulness: A Case Study
- arxiv url: http://arxiv.org/abs/2406.14273v1
- Date: Thu, 20 Jun 2024 12:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:52:01.113011
- Title: The Impact of AI on Perceived Job Decency and Meaningfulness: A Case Study
- Title(参考訳): 失業感と意味の認知に及ぼすAIの影響 : 事例研究
- Authors: Kuntal Ghosh, Shadan Sadeghian,
- Abstract要約: 本稿では,AIが職場における仕事の怠慢と有意義性に与える影響について考察する。
先進的なAIを導入しても、人間が支配的な役割を担い続けている職場を、回答者が視覚化していることが分かる。
回答者は、AIの導入が全体の仕事満足度を維持するか、あるいは向上する可能性があると信じている。
- 参考スコア(独自算出の注目度): 3.9134031118910264
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of Artificial Intelligence (AI) in workplaces stands to change the way humans work, with job satisfaction intrinsically linked to work life. Existing research on human-AI collaboration tends to prioritize performance over the experiential aspects of work. In contrast, this paper explores the impact of AI on job decency and meaningfulness in workplaces. Through interviews in the Information Technology (IT) domain, we not only examined the current work environment, but also explored the perceived evolution of the workplace ecosystem with the introduction of an AI. Findings from the preliminary exploratory study reveal that respondents tend to visualize a workplace where humans continue to play a dominant role, even with the introduction of advanced AIs. In this prospective scenario, AI is seen as serving as a complement rather than replacing the human workforce. Furthermore, respondents believe that the introduction of AI will maintain or potentially increase overall job satisfaction.
- Abstract(参考訳): 職場における人工知能(AI)の拡散は、人間の働き方を変え、仕事の満足度は本質的に仕事の生活に結びついている。
既存の人間とAIのコラボレーションに関する研究は、経験的側面よりもパフォーマンスを優先する傾向があります。
対照的に、職場におけるAIが仕事の怠慢と有意義性に与える影響について考察する。
情報技術(IT)分野におけるインタビューを通じて、現在の作業環境だけでなく、AIの導入による職場環境の進化についても検討した。
予備的な調査の結果、回答者は高度なAIを導入しても人間が支配的な役割を担い続ける職場を可視化する傾向にあることが明らかになった。
この将来的なシナリオでは、AIは人間の労働力を置き換えるのではなく、補完的な役割を果たしていると見なされている。
さらに、回答者はAIの導入が全体の仕事満足度を維持するか、あるいは向上する可能性があると信じている。
関連論文リスト
- Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction [0.0]
ますます多くの分野におけるAIの利用は、長いプロセスの最新のイテレーションである。
異なる状況でAIをどのように使うべきかを決定する方法が緊急に必要である。
論文 参考訳(メタデータ) (2024-08-23T01:00:32Z) - Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs [10.844598404826355]
米国の雇用の3分の1はAIに強く依存している。
この露出は、2019年から2023年までの雇用と賃金の伸びと正の相関関係にある。
論文 参考訳(メタデータ) (2024-07-27T08:14:18Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - On the Effect of Contextual Information on Human Delegation Behavior in
Human-AI collaboration [3.9253315480927964]
我々は、AIにインスタンスを委譲するために、人間の意思決定に文脈情報を提供することの効果について検討する。
参加者にコンテキスト情報を提供することで,人間-AIチームのパフォーマンスが大幅に向上することがわかった。
本研究は,人間代表団における人間とAIの相互作用の理解を深め,より効果的な協調システムを設計するための実用的な洞察を提供する。
論文 参考訳(メタデータ) (2024-01-09T18:59:47Z) - Human-AI Collaboration: The Effect of AI Delegation on Human Task
Performance and Task Satisfaction [0.0]
タスク性能とタスク満足度はAIデリゲートによって向上することを示す。
我々は、これらの改善の基盤となるメカニズムとして、人間による自己効力の増大を見いだした。
我々の発見は、AIモデルがより多くの管理責任を引き継ぐことが、人間とAIのコラボレーションの効果的な形態であることを示す最初の証拠を提供する。
論文 参考訳(メタデータ) (2023-03-16T11:02:46Z) - On the Influence of Explainable AI on Automation Bias [0.0]
我々は、説明可能なAI(XAI)によって自動化バイアスに影響を与える可能性に光を当てることを目指している。
ホテルのレビュー分類に関するオンライン実験を行い、最初の結果について議論する。
論文 参考訳(メタデータ) (2022-04-19T12:54:23Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。