論文の概要: Trivariate Bicycle Codes
- arxiv url: http://arxiv.org/abs/2406.19151v1
- Date: Thu, 27 Jun 2024 13:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:08:07.757415
- Title: Trivariate Bicycle Codes
- Title(参考訳): 三変量式自転車コード
- Authors: Lukas Voss, Sim Jian Xian, Tobias Haug, Kishor Bharti,
- Abstract要約: 量子誤差補正は、高精度な計算を可能にするために量子系のノイズを抑制する。
本稿では,Bravyiらが開発したフレームワークの拡張を通じて,三変量量子低密度パリティ・チェック符号を紹介する。
この新しいコードのほとんどは2次元のトーリックなレイアウトで配置することもできる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction suppresses noise in quantum systems to allow for high-precision computations. In this work, we introduce Trivariate Bicycle Quantum Low-Density Parity-Check (TB-QLDPC) codes, via an extension of the framework developed by Bravyi et al. [Nature, 627, 778-782 (2024)]. Unlike the weight-6 codes proposed in their study, our approach also offers weight-4 and weight-5 codes, which promises to be more amenable to near-term experimental setups. We show that our TB-QLDPC codes up to weight-6 have a bi-planar structure. Further, most of our new codes can also be arranged in a two-dimensional toric layout, and have substantially better encoding rates than comparable surface codes while offering comparable error suppression capabilities. For example, we can encode 4 logical qubits with distance 5 into 30 physical qubits with weight-5 check measurements, while a surface code with comparable parameters requires 100 physical qubits. The high encoding rate and compact layout make our codes highly suitable candidates for near-term hardware implementations, paving the way for a realizable quantum error correction protocol.
- Abstract(参考訳): 量子誤差補正は、高精度な計算を可能にするために量子系のノイズを抑制する。
本稿では,Bravyi et al [Nature, 627, 778-782 (2024)]によって開発されたフレームワークの拡張を通じて,TB-QLDPC(Trivariate Bicycle Quantum Low-Density Parity-Check)コードを紹介する。
彼らの研究で提案された重み6符号と異なり、我々の手法は重み4符号と重み5符号も提供しており、これはより短期的な実験的な設定に適応可能であることを約束している。
TB-QLDPC符号の重み6までの符号は平面構造を持つことを示す。
さらに、新しいコードのほとんどは2次元のトーリックレイアウトで配置することもでき、同等のエラー抑制機能を提供しながら、同等のサーフェスコードよりも符号化レートが大幅に向上します。
例えば、距離5の4つの論理量子ビットをウェイト5チェック測定で30個の物理量子ビットにエンコードできる一方、同じパラメータを持つ曲面コードは100個の物理量子ビットを必要とする。
高符号化率とコンパクトなレイアウトにより、我々のコードは短期ハードウェア実装に非常に適しており、量子誤り訂正プロトコルの実現への道が開けている。
関連論文リスト
- List Decodable Quantum LDPC Codes [49.2205789216734]
我々は、ほぼ最適レート距離のトレードオフを持つ量子低密度パリティチェック(QLDPC)符号の構成を行う。
復号化可能なQLDPCコードとユニークなデコーダを効率よくリストアップする。
論文 参考訳(メタデータ) (2024-11-06T23:08:55Z) - Quantum subspace verification for error correction codes [13.856955493134908]
本稿では,量子誤り訂正符号部分空間の知識を活用し,潜在的な測定予算を削減する量子部分空間検証の枠組みを紹介する。
有名なCalderbank-Shor-Steane符号やQLDPC安定化符号のような特定の符号の場合、設定数とサンプルの複雑さは著しく減少する。
提案した部分空間検証と直接忠実度推定を組み合わせることで、一般的なマジック論理状態の忠実度を検証するためのプロトコルを構築する。
論文 参考訳(メタデータ) (2024-10-16T13:28:33Z) - Estimating the Decoding Failure Rate of Binary Regular Codes Using Iterative Decoding [84.0257274213152]
並列ビットフリップデコーダのDFRを高精度に推定する手法を提案する。
本研究は,本症候群のモデル化およびシミュレーションによる重み比較,第1イテレーション終了時の誤りビット分布の誤検出,復号化復号化率(DFR)について検証した。
論文 参考訳(メタデータ) (2024-01-30T11:40:24Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
量子LDPC符号は、消滅する符号化率を持つ表面符号から、一定の符号化率と線形距離を持つ非常に有望な符号まで様々である。
我々は、一般化自転車(GB)符号として知られる量子LDPC符号のサブセットにインスパイアされた小さな量子符号を考案した。
論文 参考訳(メタデータ) (2024-01-15T10:38:13Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Fault-tolerant hyperbolic Floquet quantum error correcting codes [0.0]
ハイパボリックフロケット符号」と呼ばれる動的に生成された量子誤り訂正符号の族を導入する。
私たちの双曲的フロッケ符号の1つは、コード距離8の52の論理キュービットをエンコードするために400の物理キュービットを使用します。
小さなエラー率では、この符号に匹敵する論理的誤り抑制は、同じノイズモデルとデコーダを持つハニカム・フロケ符号を使用する場合、多くの物理量子ビット (1924) の5倍を必要とする。
論文 参考訳(メタデータ) (2023-09-18T18:00:02Z) - Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays [5.542275446319411]
再構成可能な原子配列上の高速qLDPC符号を用いて、フォールトトレラントな量子計算を行うハードウェア効率の手法を提案する。
本研究は,qLDPC符号を用いた低オーバヘッド量子コンピューティングの実用化への道を開くものである。
論文 参考訳(メタデータ) (2023-08-16T19:47:17Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - Quantum variational learning for quantum error-correcting codes [5.627733119443356]
VarQECは、ハードウェア効率の良い符号化回路で量子コードを探索するノイズ耐性変動量子アルゴリズムである。
原則として、VarQECは、添加物、非添加物、非退化物、純物、不純物など、任意のエラーモデルに対する量子コードを見つけることができる。
論文 参考訳(メタデータ) (2022-04-07T16:38:27Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。