論文の概要: Multivariate Bicycle Codes
- arxiv url: http://arxiv.org/abs/2406.19151v2
- Date: Wed, 24 Jul 2024 09:27:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 18:31:55.865549
- Title: Multivariate Bicycle Codes
- Title(参考訳): 多変量自転車コード
- Authors: Lukas Voss, Sim Jian Xian, Tobias Haug, Kishor Bharti,
- Abstract要約: 量子誤差補正は、高精度な計算を可能にするために量子系のノイズを抑制する。
本稿では,多変数自転車(MB)量子低密度パリティチェック(QLDPC)コードを紹介する。
この新しいコードのほとんどは2次元のトーリックレイアウトで配置することもでき、符号化レートは同等のサーフェスコードよりも大幅に向上します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction suppresses noise in quantum systems to allow for high-precision computations. In this work, we introduce Multivariate Bicycle (MB) Quantum Low-Density Parity-Check (QLDPC) codes, via an extension of the framework developed by Bravyi et al. [Nature, 627, 778-782 (2024)] and particularly focus on Trivariate Bicycle (TB) codes. Unlike the weight-6 codes proposed in their study, we offer concrete examples of weight-4 and weight-5 TB-QLDPC codes which promise to be more amenable to near-term experimental setups. We show that our TB-QLDPC codes up to weight-6 have a bi-planar structure. Further, most of our new codes can also be arranged in a two-dimensional toric layout, and have substantially better encoding rates than comparable surface codes while offering similar error suppression capabilities. For example, we can encode 4 logical qubits with distance 5 into 30 physical qubits with weight-5 check measurements, while a surface code with these parameters requires 100 physical qubits. The high encoding rate and compact layout make our codes highly suitable candidates for near-term hardware implementations, paving the way for a realizable quantum error correction protocol.
- Abstract(参考訳): 量子誤差補正は、高精度な計算を可能にするために量子系のノイズを抑制する。
本稿では,Bravyi et al (Nature, 627, 778-782 (2024)) が開発したフレームワークの拡張を通じて,多変量自転車 (MB) 量子低密度パリティ・チェック (QLDPC) 符号を導入し,特に三変量自転車 (TB) 符号に着目した。
彼らの研究で提案された重み6符号とは違って、重量4および重み5TB-QLDPC符号の具体例は、短期的な実験的な設定に対してより快適であることを約束する。
TB-QLDPC符号の重み6までの符号は平面構造を持つことを示す。
さらに、新しいコードのほとんどは2次元のトーリックレイアウトで配置することもでき、類似したエラー抑制機能を提供しながら、同等の表面コードよりも符号化レートが大幅に向上する。
例えば、距離5の4つの論理量子ビットをウェイト5チェック測定で30個の物理量子ビットにエンコードできるが、これらのパラメータを持つ曲面コードは100個の物理量子ビットを必要とする。
高符号化率とコンパクトなレイアウトにより、我々のコードは短期ハードウェア実装に非常に適した候補となり、量子誤り訂正プロトコルの実現への道が開かれた。
関連論文リスト
- List Decodable Quantum LDPC Codes [49.2205789216734]
我々は、ほぼ最適レート距離のトレードオフを持つ量子低密度パリティチェック(QLDPC)符号の構成を行う。
復号化可能なQLDPCコードとユニークなデコーダを効率よくリストアップする。
論文 参考訳(メタデータ) (2024-11-06T23:08:55Z) - Variational Graphical Quantum Error Correction Codes: adjustable codes from topological insights [1.3999481573773074]
本稿では,変分量子量子誤り訂正符号(VGQEC)と呼ばれる新しい種類の量子誤り訂正符号を開発する。
VGQEC符号は、符号の誤り訂正能力を決定する上で重要な役割を果たす調整可能な構成パラメータを備えている。
論文 参考訳(メタデータ) (2024-10-03T15:47:48Z) - Ambiguity Clustering: an accurate and efficient decoder for qLDPC codes [0.0]
独立にデコードされたクラスタに計測データを分割するアルゴリズムであるAmbiguity Clustering (AC)を導入する。
ACはBP-OSDより1~3桁速く、論理的忠実度は低下しない。
我々のCPU実装であるACは、144キュービットのGross符号を、中性原子や閉じ込められたイオン系に対してリアルタイムにデコードするのに十分高速です。
論文 参考訳(メタデータ) (2024-06-20T17:39:31Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
量子LDPC符号は、消滅する符号化率を持つ表面符号から、一定の符号化率と線形距離を持つ非常に有望な符号まで様々である。
我々は、一般化自転車(GB)符号として知られる量子LDPC符号のサブセットにインスパイアされた小さな量子符号を考案した。
論文 参考訳(メタデータ) (2024-01-15T10:38:13Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays [5.542275446319411]
再構成可能な原子配列上の高速qLDPC符号を用いて、フォールトトレラントな量子計算を行うハードウェア効率の手法を提案する。
本研究は,qLDPC符号を用いた低オーバヘッド量子コンピューティングの実用化への道を開くものである。
論文 参考訳(メタデータ) (2023-08-16T19:47:17Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Simulation of the five-qubit quantum error correction code on
superconducting qubits [0.0]
本稿では,5つのデータ量子ビットと5つのアンシラ量子ビットしか必要としない最小距離3QEC符号に基づく回路を提案する。
そのフットプリントが小さいため、提案したコードは、同様の物理エラー率でSurface-17よりも論理エラー率が低い。
論文 参考訳(メタデータ) (2021-07-14T05:29:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。