論文の概要: Towards Universal Mesh Movement Networks
- arxiv url: http://arxiv.org/abs/2407.00382v2
- Date: Tue, 2 Jul 2024 03:22:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:25:29.429680
- Title: Towards Universal Mesh Movement Networks
- Title(参考訳): ユニバーサルメッシュ運動ネットワークを目指して
- Authors: Mingrui Zhang, Chunyang Wang, Stephan Kramer, Joseph G. Wallwork, Siyi Li, Jiancheng Liu, Xiang Chen, Matthew D. Piggott,
- Abstract要約: 我々はUniversal Mesh Movement Network (UM2N)を紹介する。
UM2Nは、異なるサイズ分布と構造を持つメッシュを動かすために、非侵入的ゼロショット方式で適用することができる。
本研究では, 実世界の津波シミュレーション事例とともに, 対流法とナビエ・ストークス法に基づく実例について検討した。
- 参考スコア(独自算出の注目度): 13.450178050669964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving complex Partial Differential Equations (PDEs) accurately and efficiently is an essential and challenging problem in all scientific and engineering disciplines. Mesh movement methods provide the capability to improve the accuracy of the numerical solution without increasing the overall mesh degree of freedom count. Conventional sophisticated mesh movement methods are extremely expensive and struggle to handle scenarios with complex boundary geometries. However, existing learning-based methods require re-training from scratch given a different PDE type or boundary geometry, which limits their applicability, and also often suffer from robustness issues in the form of inverted elements. In this paper, we introduce the Universal Mesh Movement Network (UM2N), which -- once trained -- can be applied in a non-intrusive, zero-shot manner to move meshes with different size distributions and structures, for solvers applicable to different PDE types and boundary geometries. UM2N consists of a Graph Transformer (GT) encoder for extracting features and a Graph Attention Network (GAT) based decoder for moving the mesh. We evaluate our method on advection and Navier-Stokes based examples, as well as a real-world tsunami simulation case. Our method outperforms existing learning-based mesh movement methods in terms of the benchmarks described above. In comparison to the conventional sophisticated Monge-Amp\`ere PDE-solver based method, our approach not only significantly accelerates mesh movement, but also proves effective in scenarios where the conventional method fails. Our project page is at https://erizmr.github.io/UM2N/.
- Abstract(参考訳): 複素偏微分方程式(PDE)を正確かつ効率的に解くことは、すべての科学・工学分野において必須かつ困難な問題である。
メッシュ運動法は、メッシュの全体の自由度を増大させることなく、数値解の精度を向上させる能力を提供する。
従来の高度なメッシュ移動法は非常に高価であり、複雑な境界測地でシナリオを扱うのに苦労する。
しかし、既存の学習ベースの手法では、異なるPDEタイプや境界幾何学が与えられた場合、スクラッチから再学習する必要があるため、適用性が制限され、しばしば逆要素の形で堅牢性の問題に悩まされる。
本稿では,異なるサイズ分布と構造を持つメッシュを非侵襲的かつゼロショットで移動させることで,異なるPDEタイプや境界測地に適用可能な解法として,Universal Mesh Movement Network (UM2N)を提案する。
UM2Nは、機能を抽出するためのグラフトランスフォーマー(GT)エンコーダと、メッシュを動かすためのグラフアテンションネットワーク(GAT)ベースのデコーダで構成される。
本研究では, 実世界の津波シミュレーション事例とともに, 対流法とナビエ・ストークス法に基づく実例について検討した。
提案手法は,上記のベンチマークを用いて,既存の学習に基づくメッシュ移動法よりも優れる。
従来のモンジェ・アンプ型PDE解法と比較して,本手法はメッシュ運動を著しく加速するだけでなく,従来の手法が失敗するシナリオにおいても有効であることを示す。
私たちのプロジェクトページはhttps://erizmr.github.io/UM2N/です。
関連論文リスト
- Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
一般化されたインタフェース条件を用いた非重複型シュワルツ型ドメイン分解法を提案する。
本手法は各サブドメインにおける物理と等価制約付き人工ニューラルネットワーク(PECANN)を利用する。
提案手法の一般化能力と強靭な並列性能を,前方および逆問題にまたがって示す。
論文 参考訳(メタデータ) (2024-09-20T16:48:55Z) - Better Neural PDE Solvers Through Data-Free Mesh Movers [13.013830215107735]
我々は、移動メッシュを2分岐アーキテクチャに組み込む移動メッシュベースのニューラルPDEソルバ(MM-PDE)を開発した。
提案手法は,広く検討されているPDEシステムにおいて,適切なメッシュを生成し,精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-12-09T14:05:28Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - $r-$Adaptive Deep Learning Method for Solving Partial Differential
Equations [0.685316573653194]
本稿では,Deep Neural Network を用いて部分微分方程式を解くための$r-$adaptiveアルゴリズムを提案する。
提案手法は, テンソル積メッシュに制限され, 境界ノードの位置を1次元で最適化し, そこから2次元または3次元メッシュを構築する。
論文 参考訳(メタデータ) (2022-10-19T21:38:46Z) - M2N: Mesh Movement Networks for PDE Solvers [17.35053721712421]
PDEソルバのための学習ベースエンドツーエンドメッシュ移動フレームワークを提案する。
主な要件は、メッシュの緩和、バウンダリ一貫性、さまざまな解像度のメッシュへの一般化である。
我々は定常・時間依存・線形・非線形方程式について検証する。
論文 参考訳(メタデータ) (2022-04-24T04:23:31Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。