論文の概要: Physics-Informed Geometry-Aware Neural Operator
- arxiv url: http://arxiv.org/abs/2408.01600v3
- Date: Wed, 13 Nov 2024 17:41:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:08:27.864319
- Title: Physics-Informed Geometry-Aware Neural Operator
- Title(参考訳): 物理インフォームド幾何対応ニューラル演算子
- Authors: Weiheng Zhong, Hadi Meidani,
- Abstract要約: 工学設計の問題は、可変PDEパラメータとドメイン幾何学の下でパラメトリック部分微分方程式(PDE)を解くことである。
近年、ニューラル演算子はPDE演算子を学習し、PDE解を素早く予測する。
我々はPDEパラメータとドメインジオメトリの両方を同時に一般化する新しい手法であるPhysical-Informed Geometry-Aware Neural Operator (PI-GANO)を導入する。
- 参考スコア(独自算出の注目度): 1.2430809884830318
- License:
- Abstract: Engineering design problems often involve solving parametric Partial Differential Equations (PDEs) under variable PDE parameters and domain geometry. Recently, neural operators have shown promise in learning PDE operators and quickly predicting the PDE solutions. However, training these neural operators typically requires large datasets, the acquisition of which can be prohibitively expensive. To overcome this, physics-informed training offers an alternative way of building neural operators, eliminating the high computational costs associated with Finite Element generation of training data. Nevertheless, current physics-informed neural operators struggle with limitations, either in handling varying domain geometries or varying PDE parameters. In this research, we introduce a novel method, the Physics-Informed Geometry-Aware Neural Operator (PI-GANO), designed to simultaneously generalize across both PDE parameters and domain geometries. We adopt a geometry encoder to capture the domain geometry features, and design a novel pipeline to integrate this component within the existing DCON architecture. Numerical results demonstrate the accuracy and efficiency of the proposed method. All the codes and data related to this work are available on GitHub: https://github.com/WeihengZ/Physics-informed-Neural-Foundation-Operator.
- Abstract(参考訳): 工学設計の問題は、可変PDEパラメータとドメイン幾何学の下でパラメトリック部分微分方程式(PDE)を解くことである。
近年、ニューラル演算子はPDE演算子を学習し、PDE解を素早く予測する。
しかしながら、これらのニューラル演算子のトレーニングは通常、大きなデータセットを必要とする。
これを解決するために、物理インフォームドトレーニングは、ニューラルネットワークを構築する代替方法を提供し、有限要素データ生成に伴う高い計算コストを排除している。
それにもかかわらず、現在の物理インフォームドニューラルネットワークは、異なるドメインジオメトリや異なるPDEパラメータを扱う場合の制限に苦慮している。
本研究では,PDEパラメータとドメインジオメトリの両方を同時に一般化する物理インフォーメーション幾何認識ニューラル演算子(PI-GANO)を提案する。
ドメインの幾何学的特徴を捉えるためにジオメトリエンコーダを採用し、既存のDCONアーキテクチャにこのコンポーネントを統合するための新しいパイプラインを設計する。
提案手法の精度と効率を数値計算により検証した。
https://github.com/WeihengZ/Physics-informed-Neural-Foundation-Operator.com では、この作業に関連するすべてのコードとデータがGitHubで公開されている。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
我々はPDEパラメータと不規則領域形状の様々な離散表現に一般化できる新しい物理インフォームドモデルアーキテクチャを提案する。
ディープ・オペレーター・ニューラルネットワークにインスパイアされた我々のモデルは、パラメータの繰り返し埋め込みの離散化に依存しない学習を含む。
提案手法の精度と効率を数値計算により検証した。
論文 参考訳(メタデータ) (2024-04-21T12:41:30Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
本稿では、部分微分方程式(PDE)演算子を近似するディープニューラルネットワークアーキテクチャであるGIT-Netを紹介する。
GIT-Netは、PDEを定義するためによく使われる微分作用素が、特殊機能基底で表現されるときに、しばしば同義的に表現されるという事実を利用する。
数値実験により、GIT-Netは競争力のあるニューラルネットワーク演算子であり、様々なPDE問題に対して小さなテストエラーと低い評価を示すことが示された。
論文 参考訳(メタデータ) (2023-12-05T03:03:54Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
論文 参考訳(メタデータ) (2023-08-24T17:29:57Z) - Physics informed WNO [0.0]
パラメトリック偏微分方程式(PDE)系の解演算子をラベル付きトレーニングデータなしで学習するための物理インフォームドウェーブレット演算子(WNO)を提案する。
このフレームワークの有効性は、工学と科学の様々な分野に関連する4つの非線形ニューラルネットワークで検証され、実証されている。
論文 参考訳(メタデータ) (2023-02-12T14:31:50Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Multi-scale Physical Representations for Approximating PDE Solutions
with Graph Neural Operators [14.466945570499183]
EmphMessage Passing Graph Neural Networks (MPGNN) を近似した積分カーネル演算子を用いた3つのマルチレゾリューションスキーマについて検討する。
本研究では, 定常かつ非定常なPDEを考慮したMPGNN実験を行った。
論文 参考訳(メタデータ) (2022-06-29T14:42:03Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。