論文の概要: Study And Implementation of Unitary Gates in Quantum Computation Using Schrodinger Dynamics
- arxiv url: http://arxiv.org/abs/2408.17035v2
- Date: Mon, 2 Sep 2024 05:54:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 12:24:11.836392
- Title: Study And Implementation of Unitary Gates in Quantum Computation Using Schrodinger Dynamics
- Title(参考訳): シュロディンガーダイナミクスを用いた量子計算におけるユニタリゲートの研究と実装
- Authors: Kumar Gautam,
- Abstract要約: この論文は、原子や振動子などの物理系を電場や磁場によってゆがめる量子ゲートを実現するという概念を探求している。
すべての設計手順において、現れるゲートは無限次元であり、時間の制御可能な関数によって変調される原子と電磁場の間の相互作用を持つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis explores the concept of realizing quantum gates using physical systems like atoms and oscillators perturbed by electric and magnetic fields. The basic idea is that if a time-independent Hamiltonian $H_0$ is perturbed by a time-varying Hamiltonian of the form $f(t)V$, where $f(t)$ is a scalar function of time and $V$ is a Hermitian operator that does not commute with $H_0$, then a large class of unitary operators can be realized via the Schrodinger evolution corresponding to the time-varying Hamiltonian $H_0+f(t)V$. This is a consequence of the Baker-Campbell-Hausdorff formula in Lie groups and Lie algebras. The thesis addresses two problems based on this idea: first, taking a Harmonic oscillator and perturbing it with a time-independent anharmonic term, and then computing $U_g=e^{-\iota T H_1}$. Then, perturbing the harmonic Hamiltonian with a linear time-dependent term, and calculating the unitary evolution corresponding to $H(t)$ at time $T$. This gate can be expressed as $U(T)=U(T,\epsilon,f)=T\{e^{-\iota\int_0^TH(t)dt}\}$.The anharmonic gate $U_g$ is replaced by a host of commonly used gates in quantum computation, such as controlled unitary gates and quantum Fourier transform gates. The control electric field is selected appropriately. The thesis also addresses the controllability issue, determining under what conditions there exists a scalar real valued function of time $f(t), 0\leq t\leq T$ such that if $|\psi_\iota\rangle$ is any initial wave function and $|\psi_f\rangle$ is any final wave function, then $U(T,f)|\psi_i\rangle=|\psi_f\rangle$. A partial solution was obtained by replacing the unitary evolution kernel by its Dyson series truncated version. In all design procedures, the gates that appear are infinite-dimensional, with an interaction between the atom and the electromagnetic field modulated by a controllable function of time.
- Abstract(参考訳): この論文は、原子や振動子などの物理系を電場や磁場によってゆがめる量子ゲートを実現するという概念を探求している。
基本的な考え方は、時間非依存のハミルトニアン $H_0$ が、時変ハミルトニアン $f(t)V$, where $f(t)$ が時間のスカラー関数であり、$V$ が $H_0$ に可換でないエルミート作用素であれば、時変ハミルトニアン $H_0+f(t)V$ に対応するシュロディンガー進化によってユニタリ作用素の大きなクラスが実現できるということである。
これはリー群とリー代数におけるベーカー・カンベル・ハウスドルフの公式の結果である。
まず、調和振動子を時間に依存しない非調和項で摂動させ、次に$U_g=e^{-\iota T H_1}$を演算する。
そして、調和ハミルトニアンを線形時間依存項で摂動し、時間で$H(t)$に対応するユニタリ進化を計算する。
このゲートは$U(T)=U(T,\epsilon,f)=T\{e^{-\iota\int_0^TH(t)dt}\}$と表すことができる。
アンハーモニックゲート$U_g$は、制御されたユニタリゲートや量子フーリエ変換ゲートなどの量子計算においてよく使われるゲートのホストに置き換えられる。
制御電界を適切に選択する。
この論文はまた可制御性の問題にも対処し、時間 $f(t), 0\leq t\leq T$ のスカラー実値関数が存在する条件に基づいて、$|\psi_\iota\rangle$ が任意の初期波動関数であり、$|\psi_f\rangle$ が任意の最終波関数であれば、$U(T,f)|\psi_i\rangle=|\psi_f\rangle$ が成立する。
部分解は、ユニタリ進化核をダイソン級数 truncated バージョンで置き換えることで得られる。
すべての設計手順において、現れるゲートは無限次元であり、時間の制御可能な関数によって変調される原子と電磁場の間の相互作用を持つ。
関連論文リスト
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
一般化されたボトルネック補題を用いて、これらのツールの量子一般化を示す。
この補題は、古典的なハミング距離に類似する距離の量子測度に焦点を当てるが、一意に量子原理に根ざしている。
サブ線形障壁でさえも、ファインマン・カック法を用いて古典的から量子的なものを持ち上げて、厳密な下界の$T_mathrmmix = 2Omega(nalpha)$を確立する。
論文 参考訳(メタデータ) (2024-11-06T22:51:27Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
低エネルギー部分空間内のハミルトン$H$の下で時間発展をシミュレートする作業を考える。
我々は,$O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$クエリを,任意の$Gamma$に対するブロックエンコーディングに使用する量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T17:58:01Z) - Discrete-coordinate crypto-Hermitian quantum system controlled by
time-dependent Robin boundary conditions [0.0]
非エルミート的(あるいはより正確にはエルミート的)相互作用-ピクチャー表現で定式化されたユニタリ量子力学は、時間依存境界条件によって物理が制御される1Dボックス系を模倣する基礎的な$N$ by$N$Matrix Hamiltonian $H(t)$で示される。
我々の重要なメッセージは、従来の信念に反し、システムの進化のユニタリ性にもかかわらず、その「ハイゼンベルク・ハミルトン的」$Sigma(t)$も「シュル」オーディンジェ的ハミルトン的」$G()でもないということである。
論文 参考訳(メタデータ) (2024-01-19T13:28:42Z) - Small-time controllability for the nonlinear Schr\"odinger equation on
$\mathbb{R}^N$ via bilinear electromagnetic fields [55.2480439325792]
非線形シュラー・オーディンガー方程式(NLS)の磁場および電場の存在下での最小時間制御可能性問題に対処する。
詳細は、十分に大きな制御信号によって、所望の速度で(NLS)のダイナミクスを制御できる時期について調べる。
論文 参考訳(メタデータ) (2023-07-28T21:30:44Z) - Position as an independent variable and the emergence of the $1/2$-time
fractional derivative in quantum mechanics [0.0]
函数 $cal P(pm)$ を導出し、ポテンシャル $cal V(q)$ とハミルトニアン $cal H$ の下で空間発展を生成する。
ディラックの手順を用いて変数の分離が可能であり、結合された位置非依存のディラック方程式は1/2$-fractional derivativeに依存するが、結合された時間非依存のディラック方程式(TIDE)はポテンシャルの正と負のシフトをもたらす。
論文 参考訳(メタデータ) (2023-07-25T19:57:23Z) - Quantum gate synthesis by small perturbation of a free particle in a box
with electric field [0.0]
量子ユニタリゲートは、時間と位置の異なる電場を持つ一次元の箱に荷電粒子を摂動させることにより実現される。
量子ゲートの磁気制御に関する数学的説明も提供されている。
論文 参考訳(メタデータ) (2023-04-08T09:32:52Z) - Composite quantum Coriolis forces [0.0]
コリオリスの力は、その量子的な類似点を差 $Sigma(t)=H(t)-G(t)$ で見つけ、ここで「真」、観測可能なハミルトニアン$H(t)$ は瞬時エネルギーを表す。
もう1つは、false' のハミルトニアン $G(t)$ は波動関数の時間進化を生成する。
論文 参考訳(メタデータ) (2023-03-07T22:18:20Z) - $PT$-symmetric non-Hermitian Hamiltonian and invariant operator in
periodically driven $SU(1,1)$ system [1.2712661944741168]
我々は、周期的に駆動される$SU(1,1)$ジェネレータからなる$PT$対称非エルミチアンハミルトニアンの時間発展について研究する。
非エルミート不変作用素はシュル「オーディンガー方程式」を解くために用いられる。
論文 参考訳(メタデータ) (2022-01-01T10:30:22Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
半古典的状態におけるシュル・オーディンガーの方程式を考える。
このようなシュル・オーディンガー方程式はボルン=オッペンハイマーの分子動力学やエレンフェストの動力学など多くの応用を見出す。
論文 参考訳(メタデータ) (2021-12-25T20:01:54Z) - Quantum double aspects of surface code models [77.34726150561087]
基礎となる量子double $D(G)$対称性を持つ正方格子上でのフォールトトレラント量子コンピューティングの北エフモデルを再検討する。
有限次元ホップ代数$H$に基づいて、我々の構成がどのように$D(H)$モデルに一般化するかを示す。
論文 参考訳(メタデータ) (2021-06-25T17:03:38Z) - Anharmonic oscillator: a solution [77.34726150561087]
x$-空間と$(gx)-空間の力学は、有効結合定数$hbar g2$の同じエネルギースペクトルに対応する。
2古典的な一般化は、前例のない精度で$x$-空間での波動関数の均一な近似をもたらす。
論文 参考訳(メタデータ) (2020-11-29T22:13:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。