論文の概要: SetPINNs: Set-based Physics-informed Neural Networks
- arxiv url: http://arxiv.org/abs/2409.20206v1
- Date: Mon, 30 Sep 2024 11:41:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 12:56:53.676798
- Title: SetPINNs: Set-based Physics-informed Neural Networks
- Title(参考訳): SetPINNs:Set-based Physics-informed Neural Networks
- Authors: Mayank Nagda, Phil Ostheimer, Thomas Specht, Frank Rhein, Fabian Jirasek, Marius Kloft, Sophie Fellenz,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングを用いて偏微分方程式(PDE)の解を近似する有望な方法として登場した。
数値解析の分野から有限要素法に着想を得た新しい手法であるSetPINNを提案する。
本研究では,様々な物理システムにおいて,SetPINNが優れた一般化性能と精度を示すことを示す。
- 参考スコア(独自算出の注目度): 19.27512418720287
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a promising method for approximating solutions to partial differential equations (PDEs) using deep learning. However, PINNs, based on multilayer perceptrons (MLP), often employ point-wise predictions, overlooking the implicit dependencies within the physical system such as temporal or spatial dependencies. These dependencies can be captured using more complex network architectures, for example CNNs or Transformers. However, these architectures conventionally do not allow for incorporating physical constraints, as advancements in integrating such constraints within these frameworks are still lacking. Relying on point-wise predictions often results in trivial solutions. To address this limitation, we propose SetPINNs, a novel approach inspired by Finite Elements Methods from the field of Numerical Analysis. SetPINNs allow for incorporating the dependencies inherent in the physical system while at the same time allowing for incorporating the physical constraints. They accurately approximate PDE solutions of a region, thereby modeling the inherent dependencies between multiple neighboring points in that region. Our experiments show that SetPINNs demonstrate superior generalization performance and accuracy across diverse physical systems, showing that they mitigate failure modes and converge faster in comparison to existing approaches. Furthermore, we demonstrate the utility of SetPINNs on two real-world physical systems.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングを用いて偏微分方程式(PDE)の解を近似する有望な方法として登場した。
しかし、PINNは多層パーセプトロン(MLP)に基づいており、時間的または空間的依存関係のような物理的システム内の暗黙的な依存関係を見越して、ポイントワイズ予測を用いることが多い。
これらの依存関係は、CNNやTransformerなど、より複雑なネットワークアーキテクチャを使ってキャプチャできる。
しかし、これらのアーキテクチャは、そのような制約をこれらのフレームワークに組み込むことの進歩がまだ不足しているため、従来の方法では物理的な制約を組み込むことができない。
ポイントワイズ予測を頼りにすると、しばしば自明な解が得られる。
この制限に対処するために、数値解析の分野から有限要素法に着想を得た新しいアプローチであるSetPINNを提案する。
SetPINNは、物理的システムに固有の依存関係を組み込むと同時に、物理的な制約を組み込むことができる。
彼らは領域のPDE解を正確に近似し、その領域内の複数の隣接点間の固有の依存関係をモデル化する。
実験により,SetPINNは様々な物理システムにおいて優れた一般化性能と精度を示し,既存の手法と比較して,障害モードを緩和し,より高速に収束することを示した。
さらに,2つの実世界の物理システムにおけるSetPINNの有用性を実証する。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems [40.46280139210502]
多重忠実積層PINNとドメイン分解に基づく有限基底PINNの組み合わせを用いる。
ドメイン分解アプローチは、PINNと重ね合わせのPINNアプローチを明らかに改善する。
FBPINNアプローチは、多要素物理インフォームド・ディープ・オペレーター・ネットワークに拡張可能であることが実証された。
論文 参考訳(メタデータ) (2024-01-15T18:32:53Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - On the Generalization of PINNs outside the training domain and the
Hyperparameters influencing it [1.3927943269211593]
PINNは、解データを必要としない微分方程式の解をエミュレートするように訓練されたニューラルネットワークアーキテクチャである。
トレーニング領域外におけるPINN予測の挙動を実証分析する。
PINNのアルゴリズム設定が一般化のポテンシャルに影響を及ぼすかどうかを評価し,予測に対する各効果を示す。
論文 参考訳(メタデータ) (2023-02-15T09:51:56Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Robust Learning of Physics Informed Neural Networks [2.86989372262348]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式の解法に有効であることが示されている。
本稿では、PINNがトレーニングデータのエラーに敏感であり、これらのエラーをPDEの解領域上で動的に伝播させるのに過度に適合していることを示す。
論文 参考訳(メタデータ) (2021-10-26T00:10:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。