論文の概要: SetPINNs: Set-based Physics-informed Neural Networks
- arxiv url: http://arxiv.org/abs/2409.20206v1
- Date: Mon, 30 Sep 2024 11:41:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 12:56:53.676798
- Title: SetPINNs: Set-based Physics-informed Neural Networks
- Title(参考訳): SetPINNs:Set-based Physics-informed Neural Networks
- Authors: Mayank Nagda, Phil Ostheimer, Thomas Specht, Frank Rhein, Fabian Jirasek, Marius Kloft, Sophie Fellenz,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングを用いて偏微分方程式(PDE)の解を近似する有望な方法として登場した。
数値解析の分野から有限要素法に着想を得た新しい手法であるSetPINNを提案する。
本研究では,様々な物理システムにおいて,SetPINNが優れた一般化性能と精度を示すことを示す。
- 参考スコア(独自算出の注目度): 19.27512418720287
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a promising method for approximating solutions to partial differential equations (PDEs) using deep learning. However, PINNs, based on multilayer perceptrons (MLP), often employ point-wise predictions, overlooking the implicit dependencies within the physical system such as temporal or spatial dependencies. These dependencies can be captured using more complex network architectures, for example CNNs or Transformers. However, these architectures conventionally do not allow for incorporating physical constraints, as advancements in integrating such constraints within these frameworks are still lacking. Relying on point-wise predictions often results in trivial solutions. To address this limitation, we propose SetPINNs, a novel approach inspired by Finite Elements Methods from the field of Numerical Analysis. SetPINNs allow for incorporating the dependencies inherent in the physical system while at the same time allowing for incorporating the physical constraints. They accurately approximate PDE solutions of a region, thereby modeling the inherent dependencies between multiple neighboring points in that region. Our experiments show that SetPINNs demonstrate superior generalization performance and accuracy across diverse physical systems, showing that they mitigate failure modes and converge faster in comparison to existing approaches. Furthermore, we demonstrate the utility of SetPINNs on two real-world physical systems.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングを用いて偏微分方程式(PDE)の解を近似する有望な方法として登場した。
しかし、PINNは多層パーセプトロン(MLP)に基づいており、時間的または空間的依存関係のような物理的システム内の暗黙的な依存関係を見越して、ポイントワイズ予測を用いることが多い。
これらの依存関係は、CNNやTransformerなど、より複雑なネットワークアーキテクチャを使ってキャプチャできる。
しかし、これらのアーキテクチャは、そのような制約をこれらのフレームワークに組み込むことの進歩がまだ不足しているため、従来の方法では物理的な制約を組み込むことができない。
ポイントワイズ予測を頼りにすると、しばしば自明な解が得られる。
この制限に対処するために、数値解析の分野から有限要素法に着想を得た新しいアプローチであるSetPINNを提案する。
SetPINNは、物理的システムに固有の依存関係を組み込むと同時に、物理的な制約を組み込むことができる。
彼らは領域のPDE解を正確に近似し、その領域内の複数の隣接点間の固有の依存関係をモデル化する。
実験により,SetPINNは様々な物理システムにおいて優れた一般化性能と精度を示し,既存の手法と比較して,障害モードを緩和し,より高速に収束することを示した。
さらに,2つの実世界の物理システムにおけるSetPINNの有用性を実証する。
関連論文リスト
- PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
物理情報ニューラルネットワーク(PINN)は、物理プロセスのモデリングにおいて大幅な改善を実現しました。
PINNは単純なアーキテクチャに基づいており、ネットワークパラメータを最適化することで複雑な物理システムの振る舞いを学習し、基礎となるPDEの残余を最小限に抑える。
ここでは、非線形PDEの複雑な振る舞いを学ぶのに、どのネットワークアーキテクチャが最適かという問題に対処する。
論文 参考訳(メタデータ) (2021-05-17T14:29:08Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Physics informed deep learning for computational elastodynamics without
labeled data [13.084113582897965]
ラベル付きデータに頼らずにエラストダイナミックス問題をモデル化するために,混合可変出力を持つ物理インフォームドニューラルネットワーク(PINN)を提案する。
その結果,計算力学応用の文脈におけるPINNの有望性を示す。
論文 参考訳(メタデータ) (2020-06-10T19:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。