論文の概要: MarineFormer: A Spatio-Temporal Attention Model for USV Navigation in Dynamic Marine Environments
- arxiv url: http://arxiv.org/abs/2410.13973v4
- Date: Wed, 09 Jul 2025 23:40:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 14:32:07.58895
- Title: MarineFormer: A Spatio-Temporal Attention Model for USV Navigation in Dynamic Marine Environments
- Title(参考訳): MarineFormer: 動的海洋環境におけるUSVナビゲーションのための時空間注意モデル
- Authors: Ehsan Kazemi, Dechen Gao, Iman Soltani,
- Abstract要約: 局所流れ場計測を取り入れることによって,問題の性質が根本的に変化し,解決不可能なナビゲーションシナリオがトラクタブルなものに変換されることを示す。
センサ融合のための空間的注意と時間的注意を統合したトランスフォーマーベースのポリシーアーキテクチャであるtextbfMarineFormer を提案する。
- 参考スコア(独自算出の注目度): 3.669739954510407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous navigation in marine environments can be extremely challenging, especially in the presence of spatially varying flow disturbances and dynamic and static obstacles. In this work, we demonstrate that incorporating local flow field measurements fundamentally alters the nature of the problem, transforming otherwise unsolvable navigation scenarios into tractable ones. However, the mere availability of flow data is not sufficient; it must be effectively fused with conventional sensory inputs such as ego-state and obstacle states. To this end, we propose \textbf{MarineFormer}, a Transformer-based policy architecture that integrates two complementary attention mechanisms: spatial attention for sensor fusion, and temporal attention for capturing environmental dynamics. MarineFormer is trained end-to-end via reinforcement learning in a 2D simulated environment with realistic flow features and obstacles. Extensive evaluations against classical and state-of-the-art baselines show that our approach improves episode completion success rate by nearly 23\% while reducing path length. Ablation studies further highlight the critical role of flow measurements and the effectiveness of our proposed architecture in leveraging them.
- Abstract(参考訳): 海洋環境における自律航法は、特に空間的に変化する流れの乱れや動的および静的な障害物が存在する場合、非常に困難である。
本研究では,局所流れ場計測を取り入れることによって,問題の性質が根本的に変化し,解決不可能なナビゲーションシナリオがトラクタブルなシナリオに変換されることを実証する。
しかし、フローデータの可用性は十分ではなく、エゴ状態や障害物状態のような従来の感覚入力と効果的に融合する必要がある。
そこで本稿では, センサ融合のための空間的注意と, 環境力学を捉えるための時間的注意という2つの相補的注意機構を統合した, トランスフォーマーベースのポリシーアーキテクチャである, \textbf{MarineFormer}を提案する。
MarineFormerは、現実的なフロー特徴と障害物を持つ2Dシミュレーション環境で、強化学習を通じてエンドツーエンドでトレーニングされている。
古典的,最先端のベースラインに対する広範囲な評価は,パス長を減少させながら,エピソード完了率を約23%向上させることを示す。
アブレーション研究は、フロー計測の重要部分と、それを活用する上で提案したアーキテクチャの有効性をさらに強調する。
関連論文リスト
- Depth-Constrained ASV Navigation with Deep RL and Limited Sensing [45.77464360746532]
本研究では,深度制約下でのASVナビゲーションのための強化学習フレームワークを提案する。
環境意識を高めるため,GPレグレッションをRLフレームワークに統合する。
我々は,実世界の水環境に対して,訓練された政策が適切に一般化されることを保証する効果的なシミュレート・トゥ・リアル・トランスファーを実証する。
論文 参考訳(メタデータ) (2025-04-25T10:56:56Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
本稿では,視覚的位置認識(VPR),特徴マッチング,画像分割を組み合わせた統合パイプラインを提案する。
本手法は, 再検討領域のロバスト同定, 剛性変換の推定, 生態系変化の下流解析を可能にする。
論文 参考訳(メタデータ) (2025-03-06T05:13:19Z) - Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
本稿では,動的障害物に関する情報を最小限に抑えた最適オンライン動作計画手法を提案する。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
我々は,非線形モデル予測制御(NMPC)を含む最先端のプランナーに対して,衝突速度,計算,タスク性能の向上の観点から,我々の方法論の優位性を示す。
論文 参考訳(メタデータ) (2025-01-16T16:45:08Z) - Navigation World Models [68.58459393846461]
本稿では,過去の観測とナビゲーション行動に基づいて,将来の視覚観測を予測できる制御可能な映像生成モデルを提案する。
慣れ親しんだ環境では、NWMはナビゲーションの軌道をシミュレートし、目的を達成するかどうかを評価することで計画することができる。
実験は、スクラッチからの軌道計画や、外部ポリシーからサンプリングされた軌道のランク付けにおいて、その効果を実証する。
論文 参考訳(メタデータ) (2024-12-04T18:59:45Z) - Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
本稿では,自律型海運シミュレータにおける内陸水路輸送(IWT)のために実装されたベンチマークディープ強化学習(RL)アルゴリズムのロバスト性について検討する。
モデルのないアプローチはシミュレーターで適切なポリシーを達成でき、訓練中に遭遇したことのないポート環境をナビゲートすることに成功した。
論文 参考訳(メタデータ) (2024-11-07T17:55:07Z) - Deep-Sea A*+: An Advanced Path Planning Method Integrating Enhanced A* and Dynamic Window Approach for Autonomous Underwater Vehicles [1.3807821497779342]
深海環境における極度の環境は、水中での作戦に重大な課題をもたらす。
改良されたA*アルゴリズムと動的ウィンドウアプローチ(DWA)を統合した高度な経路計画手法を提案する。
提案手法は,経路の滑らかさ,障害物回避,リアルタイム性能の観点から,従来のA*アルゴリズムを超越した手法である。
論文 参考訳(メタデータ) (2024-10-22T07:29:05Z) - DiffuTraj: A Stochastic Vessel Trajectory Prediction Approach via Guided Diffusion Process [23.42712306116432]
船の操縦は、その固有の複雑さと不確定性によって特徴づけられ、船舶の軌道予測システムを必要とする。
従来の軌道予測法では, 容器運動の多モード性を表現するために潜伏変数を用いる。
我々は,不確実性から確実性への血管運動の遷移を明示的にシミュレートする。
論文 参考訳(メタデータ) (2024-10-12T14:50:18Z) - Model-Based Reinforcement Learning for Control of Strongly-Disturbed Unsteady Aerodynamic Flows [0.0]
本稿では,モデルに基づく強化学習(MBRL)手法を提案する。
モデルの堅牢性と一般化性は、2つの異なる流れ環境で実証される。
そこで本研究では,低次環境下で学んだ政策が,フルCFD環境における効果的な制御戦略に変換されることを実証する。
論文 参考訳(メタデータ) (2024-08-26T23:21:44Z) - TransFlower: An Explainable Transformer-Based Model with Flow-to-Flow
Attention for Commuting Flow Prediction [18.232085070775835]
通勤パターンの予測にフロー・ツー・フロー・アテンションを用いた,説明可能なトランスフォーマーベースのモデルであるTransFlowerを紹介した。
我々のモデルは、既存の手法を最大30.8%のCommon Part of Commutersで上回ります。
論文 参考訳(メタデータ) (2024-02-23T16:00:04Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
高ダイナミックレンジイメージングは、複数の低ダイナミックレンジ入力から情報を取得し、リアルな出力を生成することを目的としている。
既存の手法では、前景やカメラの動きによって引き起こされる入力フレーム間の空間的ずれに焦点を当てることが多い。
本研究では,SCTNet(Semantics Consistent Transformer)を用いたアライメントフリーネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:03:23Z) - Learned Risk Metric Maps for Kinodynamic Systems [54.49871675894546]
本研究では,高次元力学系のコヒーレントリスクメトリクスをリアルタイムに推定するための学習型リスクメトリクスマップを提案する。
LRMMモデルは設計と訓練が簡単で、障害セットの手続き的生成、状態と制御のサンプリング、および関数近似器の教師付きトレーニングのみを必要とする。
論文 参考訳(メタデータ) (2023-02-28T17:51:43Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STVGFormer: Spatio-Temporal Video Grounding with Static-Dynamic
Cross-Modal Understanding [68.96574451918458]
静的分岐と動的分岐を用いて視覚言語依存をモデル化するSTVGというフレームワークを提案する。
静的分岐と動的分岐は、クロスモーダルトランスとして設計されている。
提案手法は39.6%のvIoUを達成し,HC-STVGの第1位を獲得した。
論文 参考訳(メタデータ) (2022-07-06T15:48:58Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - DPMPC-Planner: A real-time UAV trajectory planning framework for complex
static environments with dynamic obstacles [0.9462808515258462]
安全なUAVナビゲーションは、複雑な環境構造、動的障害物、計測ノイズによる不確実性、予測不可能な移動障害物の挙動のために困難である。
本稿では,動的障害物を伴う複雑な静的環境を考慮した安全なナビゲーションを実現するための軌道計画フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-14T23:51:02Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
VLN(Vision-and-Language Navigation)は、エージェントが目標を達成するために3D環境を移動する方法を決定するタスクである。
VLNタスクの問題点の1つは、対話型環境において、人間に注釈を付けた指示で十分なナビゲーションパスを収集することは困難であるため、データの不足である。
本稿では,低品質な拡張データではなく,効果的な条件を考慮可能な,対向駆動の反実的推論モデルを提案する。
論文 参考訳(メタデータ) (2019-11-17T18:02:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。