論文の概要: GoRINNs: Godunov-Riemann Informed Neural Networks for Learning Hyperbolic Conservation Laws
- arxiv url: http://arxiv.org/abs/2410.22193v2
- Date: Thu, 31 Oct 2024 13:37:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:59:33.646043
- Title: GoRINNs: Godunov-Riemann Informed Neural Networks for Learning Hyperbolic Conservation Laws
- Title(参考訳): GoRINNs: 双曲的保存法を学習するニューラルネットワークのGoduov-Riemann
- Authors: Dimitrios G. Patsatzis, Mario di Bernardo, Lucia Russo, Constantinos Siettos,
- Abstract要約: 本稿では,保存法則の非線形システムの逆問題に対する数値解析インフォームドニューラルネットワークを提案する。
GoRINNは双曲型偏微分方程式におけるリーマン問題の解に対する高分解能なゴドゥノフスキームに基づいている。
GoRINNはスムーズな領域と不連続な領域の両方で非常に高精度であることを示す。
- 参考スコア(独自算出の注目度): 0.6874745415692135
- License:
- Abstract: We present GoRINNs: numerical analysis-informed neural networks for the solution of inverse problems of non-linear systems of conservation laws. GoRINNs are based on high-resolution Godunov schemes for the solution of the Riemann problem in hyperbolic Partial Differential Equations (PDEs). In contrast to other existing machine learning methods that learn the numerical fluxes of conservative Finite Volume methods, GoRINNs learn the physical flux function per se. Due to their structure, GoRINNs provide interpretable, conservative schemes, that learn the solution operator on the basis of approximate Riemann solvers that satisfy the Rankine-Hugoniot condition. The performance of GoRINNs is assessed via four benchmark problems, namely the Burgers', the Shallow Water, the Lighthill-Whitham-Richards and the Payne-Whitham traffic flow models. The solution profiles of these PDEs exhibit shock waves, rarefactions and/or contact discontinuities at finite times. We demonstrate that GoRINNs provide a very high accuracy both in the smooth and discontinuous regions.
- Abstract(参考訳): 本稿では,保存法則の非線形システムの逆問題に対する数値解析インフォームドニューラルネットワークを提案する。
GoRINNは双曲型偏微分方程式(PDE)におけるリーマン問題の解に対する高分解能なゴドゥノフスキームに基づいている。
保守的な有限体積法の数値フラックスを学習する既存の機械学習手法とは対照的に、GoRINNはそれぞれの物理フラックス関数を学習する。
その構造のため、GoRINNは、ランキン・フーゴニオット条件を満たす近似リーマン解法に基づいて解作用素を学習する解釈可能で保守的なスキームを提供する。
GoRINNの性能は、Burgers、Shallow Water、Lighthill-Whitham-Richards、Payne-Whithamトラフィックフローモデルという4つのベンチマーク問題によって評価される。
これらのPDEの溶液プロファイルは, 衝撃波, 希土類, 接触不連続性を有限時間で示す。
GoRINNはスムーズな領域と不連続な領域の両方で非常に高精度であることを示す。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Operator Learning Enhanced Physics-informed Neural Networks for Solving
Partial Differential Equations Characterized by Sharp Solutions [10.999971808508437]
そこで我々は,OL-PINN(Operator Learning Enhanced Physics-informed Neural Networks)と呼ばれる新しいフレームワークを提案する。
提案手法は, 強い一般化能力を実現するために, 少数の残差点しか必要としない。
精度を大幅に向上すると同時に、堅牢なトレーニングプロセスも保証する。
論文 参考訳(メタデータ) (2023-10-30T14:47:55Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
偏微分方程式(PDE)の高精度かつ安価な解を可能にする物理インフォームドニューラルネットワーク(PINN)の新しい数値スキームを提案する。
提案手法は、物理領域とディリクレ境界条件を定義するのに必要な許容的なNURBSパラメトリゼーションとPINNソルバを組み合わせたものである。
論文 参考訳(メタデータ) (2022-10-25T10:35:45Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
本研究では,エアリーストレス関数とフーリエ級数を組み合わせた物理情報ニューラルネットワーク(PINN)の適用について検討する。
両高調波PDEに対するPINNソリューションの精度は, エアリー応力関数による特徴空間の強化により著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-08-16T17:19:50Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。