論文の概要: Solving Differential Equations with Constrained Learning
- arxiv url: http://arxiv.org/abs/2410.22796v1
- Date: Wed, 30 Oct 2024 08:20:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:26:20.172429
- Title: Solving Differential Equations with Constrained Learning
- Title(参考訳): 制約学習による微分方程式の解法
- Authors: Viggo Moro, Luiz F. O. Chamon,
- Abstract要約: (部分微分方程式)は自然現象を記述するための基本的な道具であり、その解は科学や工学において不可欠である。
有限要素法のような従来の手法は信頼性の高い解を提供するが、その精度は計算集約的な微細メッシュの使用と結びついている。
本稿では,SCL(Science-Constrained Learning)フレームワークを開発することにより,これらの課題に対処する。
PDEの(弱い)解を見つけることは、最悪の損失を伴う制約付き学習問題の解決と等価であることを示す。
- 参考スコア(独自算出の注目度): 8.522558872274276
- License:
- Abstract: (Partial) differential equations (PDEs) are fundamental tools for describing natural phenomena, making their solution crucial in science and engineering. While traditional methods, such as the finite element method, provide reliable solutions, their accuracy is often tied to the use of computationally intensive fine meshes. Moreover, they do not naturally account for measurements or prior solutions, and any change in the problem parameters requires results to be fully recomputed. Neural network-based approaches, such as physics-informed neural networks and neural operators, offer a mesh-free alternative by directly fitting those models to the PDE solution. They can also integrate prior knowledge and tackle entire families of PDEs by simply aggregating additional training losses. Nevertheless, they are highly sensitive to hyperparameters such as collocation points and the weights associated with each loss. This paper addresses these challenges by developing a science-constrained learning (SCL) framework. It demonstrates that finding a (weak) solution of a PDE is equivalent to solving a constrained learning problem with worst-case losses. This explains the limitations of previous methods that minimize the expected value of aggregated losses. SCL also organically integrates structural constraints (e.g., invariances) and (partial) measurements or known solutions. The resulting constrained learning problems can be tackled using a practical algorithm that yields accurate solutions across a variety of PDEs, neural network architectures, and prior knowledge levels without extensive hyperparameter tuning and sometimes even at a lower computational cost.
- Abstract(参考訳): (部分微分方程式)は自然現象を記述するための基本的な道具であり、その解は科学や工学において不可欠である。
有限要素法のような従来の手法は信頼性の高い解を提供するが、その精度は計算集約的な微細メッシュの使用と結びついていることが多い。
さらに、彼らは自然に測定や事前の解決策を説明せず、問題パラメータの変更には結果を完全に再計算する必要がある。
物理インフォームドニューラルネットワークやニューラル演算子といったニューラルネットワークベースのアプローチは、これらのモデルをPDEソリューションに直接適合させることで、メッシュフリーな代替手段を提供する。
また、事前の知識を統合して、トレーニングの損失を増やすだけで、PDEの家族全体に取り組むこともできる。
それでも、コロケーションポイントや各損失に関連する重みなどのハイパーパラメータに非常に敏感である。
本稿では,SCL(Science-Constrained Learning)フレームワークを開発することにより,これらの課題に対処する。
PDEの(弱い)解を見つけることは、最悪の損失を伴う制約付き学習問題の解決と等価であることを示す。
これは、集計された損失の期待値を最小限に抑える以前の方法の限界を説明する。
SCLはまた、構造的制約(例えば、不変性)と(部分的)測定または既知の解を有機的に統合する。
結果として生じる制約付き学習問題は、様々なPDE、ニューラルネットワークアーキテクチャ、より広範なハイパーパラメータチューニングを伴わずに、時には計算コストを下げることなく、正確な解が得られる実用的なアルゴリズムを用いて取り組めることができる。
関連論文リスト
- Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - A Deep Learning Framework for Solving Hyperbolic Partial Differential
Equations: Part I [0.0]
本研究では,非線形PDEの解を近似する物理情報深層学習フレームワークの開発に焦点をあてる。
この枠組みは、境界条件(ノイマン/ディリクレ)、エントロピー条件、および正則性要件の仮定を自然に扱う。
論文 参考訳(メタデータ) (2023-07-09T08:27:17Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - One-shot learning for solution operators of partial differential equations [3.559034814756831]
データから偏微分方程式(PDE)で表される物理系の方程式を学習し、解くことは、科学と工学の様々な分野において中心的な課題である。
従来のPDEの数値解法は複雑なシステムでは計算コストがかかり、物理系の完全なPDEが必要となる。
本稿では,1つのPDEソリューション,すなわちワンショット学習のみを必要とする,最初のソリューション演算子学習法を提案する。
論文 参考訳(メタデータ) (2021-04-06T17:35:10Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。