論文の概要: Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows
- arxiv url: http://arxiv.org/abs/2411.09476v1
- Date: Thu, 14 Nov 2024 14:31:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:23:33.165039
- Title: Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows
- Title(参考訳): グラフニューラルネットワークと微分方程式:流体データ同化に対するハイブリッドアプローチ
- Authors: M. Quattromini, M. A. Bucci, S. Cherubini, O. Semeraro,
- Abstract要約: 本研究では,グラフニューラルネットワーク(GNN)とReynolds-Averaged Navier Stokes(RANS)方程式を組み合わせた新しいハイブリッド手法を提案する。
その結果, 純粋なデータ駆動モデルと比較して, 再構成平均流の精度は著しく向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations to enhance the accuracy of mean flow reconstruction across a range of fluid dynamics applications. Traditional purely data-driven Neural Networks (NNs) models, often struggle maintaining physical consistency. Moreover, they typically require large datasets to achieve reliable performances. The GNN framework, which naturally handles unstructured data such as complex geometries in Computational Fluid Dynamics (CFD), is here integrated with RANS equations as a physical baseline model. The methodology leverages the adjoint method, enabling the use of RANS-derived gradients as optimization terms in the GNN training process. This ensures that the learned model adheres to the governing physics, maintaining physical consistency while improving the prediction accuracy. We test our approach on multiple CFD scenarios, including cases involving generalization with respect to the Reynolds number, sparse measurements, denoising and inpainting of missing portions of the mean flow. The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models, using limited amounts of data in the training dataset. The key strengths of this study are the integration of physical laws into the training process of the GNN, and the ability to achieve high-accuracy predictions with a limited amount of data, making this approach particularly valuable for applications in fluid dynamics where data is often scarce.
- Abstract(参考訳): 本研究では,グラフニューラルネットワーク(GNN)とReynolds-Averaged Navier Stokes(RANS)方程式を併用して,流体力学の応用範囲における平均流れ再構成の精度を高める新しいハイブリッド手法を提案する。
従来の純粋にデータ駆動ニューラルネットワーク(NN)モデルは、物理的一貫性を維持するのに苦労することが多い。
さらに、信頼性の高いパフォーマンスを達成するには、通常、大きなデータセットが必要です。
計算流体力学(CFD)における複素測地などの非構造データを自然に扱うGNNフレームワークは、物理ベースラインモデルとしてRANS方程式と統合されている。
この手法は、GNNトレーニングプロセスにおいて、RANSから派生した勾配を最適化用語として使用できる、随伴法を利用する。
これにより、学習したモデルは、予測精度を改善しつつ、物理的な一貫性を維持しながら、制御物理に従属することを保証する。
我々は,Reynolds数に対する一般化,スパース測定,平均フローの欠落部分のデノナイズとインペイントなど,複数のCFDシナリオに対するアプローチを検証した。
その結果、トレーニングデータセット内の限られた量のデータを用いて、純粋なデータ駆動モデルと比較して、再構成平均フローの精度が大幅に向上した。
この研究の主な強みは、GNNのトレーニングプロセスに物理法則を統合することと、限られた量のデータで高精度な予測を実現する能力である。
関連論文リスト
- Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
我々は,PE-GNN,Quantile Neural Networks,および再校正技術を完全非パラメトリックフレームワークに統合する新しい手法である,位置グラフ量子ニューラルネットワーク(PE-GQNN)を紹介する。
ベンチマークデータセットの実験では、PE-GQNNは予測精度と不確実性の定量化の両方で既存の最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-09-27T16:02:12Z) - Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems [4.634606500665259]
マルチスケールプロセスのモデリングのための知識誘導機械学習(KGML)フレームワークを提案する。
本研究では,水文学における流れ予測の文脈におけるその性能について検討する。
論文 参考訳(メタデータ) (2024-07-29T16:25:43Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワーク(GNN)モデルによる随伴最適化に基づく,流体力学に応用されたデータ同化のための新しい機械学習手法を提案する。
我々は,有限要素法(FEM)の解法に基づく直接数値シミュレーションを用いて,GNNモデルと解法の間の2次元のインターフェースにより,GNNの予測をFEM解析の処理後ステップに組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:11:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
論文 参考訳(メタデータ) (2021-09-04T08:43:19Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。