論文の概要: Understanding Student Acceptance, Trust, and Attitudes Toward AI-Generated Images for Educational Purposes
- arxiv url: http://arxiv.org/abs/2411.15710v1
- Date: Sun, 24 Nov 2024 04:39:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:30.294623
- Title: Understanding Student Acceptance, Trust, and Attitudes Toward AI-Generated Images for Educational Purposes
- Title(参考訳): 教育目的のためのAI画像に対する学生の受容・信頼・態度の理解
- Authors: Aung Pyae,
- Abstract要約: 本研究は,AI生成画像に対する学生の受容,信頼,肯定的な態度を教育課題として評価する。
その結果、使いやすさと潜在的学術的利益を重んじる学生の間では、高い受け入れ、信頼、肯定的な態度が示された。
これらの知見は、倫理的考察と知的財産問題に対処する包括的ガイドラインの策定の必要性を示唆している。
- 参考スコア(独自算出の注目度): 1.0878040851637998
- License:
- Abstract: Recent advancements in artificial intelligence (AI) have broadened the applicability of AI-generated images across various sectors, including the creative industry and design. However, their utilization in educational contexts, particularly among undergraduate students in computer science and software engineering, remains underexplored. This study adopts an exploratory approach, employing questionnaires and interviews, to assess students' acceptance, trust, and positive attitudes towards AI-generated images for educational tasks such as presentations, reports, and web design. The results reveal high acceptance, trust, and positive attitudes among students who value the ease of use and potential academic benefits. However, concerns regarding the lack of technical precision, where the AI fails to accurately produce images as specified by prompts, moderately impact their practical application in detail-oriented educational tasks. These findings suggest a need for developing comprehensive guidelines that address ethical considerations and intellectual property issues, while also setting quality standards for AI-generated images to enhance their educational use. Enhancing the capabilities of AI tools to meet precise user specifications could foster creativity and improve educational outcomes in technical disciplines.
- Abstract(参考訳): 人工知能(AI)の最近の進歩は、クリエイティブ産業やデザインを含むさまざまな分野において、AI生成画像の適用性を広げている。
しかし、特にコンピュータサイエンスとソフトウェア工学の学部生の間では、教育的文脈における彼らの利用はいまだに過小評価されている。
本研究は,プレゼンテーションやレポート,Webデザインなど,AI生成画像に対する学生の受容,信頼,肯定的な態度を評価するために,質問紙やインタビューを用いた探索的アプローチを採用する。
その結果、使いやすさと潜在的学術的利益を重んじる学生の間では、高い受け入れ、信頼、肯定的な態度が示された。
しかし、AIがプロンプトによって指定された画像の正確な生成に失敗した技術的精度の欠如に関する懸念は、ディテール指向の教育タスクにおける実践的応用に適度に影響を及ぼす。
これらの知見は、倫理的考察や知的財産問題に対処する包括的ガイドラインの開発の必要性を示唆するとともに、AI生成画像の品質基準を設定して教育的利用を高めることの必要性を示唆している。
正確なユーザ仕様を満たすためにAIツールの能力を強化することは、創造性を育み、技術的な分野における教育的成果を改善する可能性がある。
関連論文リスト
- Human-Centric eXplainable AI in Education [0.0]
本稿では,教育現場における人間中心型eXplainable AI(HCXAI)について検討する。
学習成果の向上、ユーザ間の信頼の向上、AI駆動ツールの透明性確保における役割を強調している。
ユーザ理解とエンゲージメントを優先するHCXAIシステムの開発のための包括的なフレームワークを概説する。
論文 参考訳(メタデータ) (2024-10-18T14:02:47Z) - Collaborative Design of AI-Enhanced Learning Activities [0.0]
我々は、プレサービス教師、インサービス教師、EdTechスペシャリストがAIを教育実践に効果的に組み込むことができるような形式的な介入を開発する。
参加者は、AIリテラシーを教育に組み込むさまざまなアクティビティを探求することで、AIの教育と学習のポテンシャルを反映している。
論文 参考訳(メタデータ) (2024-07-09T08:34:08Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
教育におけるAIは、妥当性、信頼性、透明性、公平性、公平性に関する倫理的な懸念を提起する。
教育者、政策立案者、組織を含む様々な利害関係者は、教育における倫理的AIの使用を保証するガイドラインを開発した。
本稿では,AIを活用したツールの教育測定における倫理的意義について検討する。
論文 参考訳(メタデータ) (2024-06-27T05:28:40Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
本稿では,AIIA(Artificial Intelligence-Enabled Intelligent Assistant)という,高等教育におけるパーソナライズおよび適応学習のための新しいフレームワークを提案する。
AIIAシステムは、高度なAIと自然言語処理(NLP)技術を活用して、対話的で魅力的な学習プラットフォームを構築する。
論文 参考訳(メタデータ) (2023-09-19T19:31:15Z) - Experts' View on Challenges and Needs for Fairness in Artificial
Intelligence for Education [11.374344511408443]
我々は,AIに基づく教育システムの開発を通じて,公正に対処する上での課題とニーズについて,専門家主導による最初の体系的な調査を行った。
我々は,教育技術の専門家が実際に直面している課題とニーズについて,共通かつ多様化した見解を明らかにした。
論文 参考訳(メタデータ) (2022-06-23T13:29:39Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - A Review on Intelligent Object Perception Methods Combining
Knowledge-based Reasoning and Machine Learning [60.335974351919816]
物体知覚はコンピュータビジョンの基本的なサブフィールドである。
最近の研究は、物体の視覚的解釈のインテリジェンスレベルを拡大するために、知識工学を統合する方法を模索している。
論文 参考訳(メタデータ) (2019-12-26T13:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。