論文の概要: A data-driven learned discretization approach in finite volume schemes for hyperbolic conservation laws and varying boundary conditions
- arxiv url: http://arxiv.org/abs/2412.07541v1
- Date: Tue, 10 Dec 2024 14:18:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:35:44.726629
- Title: A data-driven learned discretization approach in finite volume schemes for hyperbolic conservation laws and varying boundary conditions
- Title(参考訳): 双曲的保存則と異なる境界条件に対する有限体積スキームにおけるデータ駆動学習離散化手法
- Authors: Guillaume de Romémont, Florent Renac, Jorge Nunez, Francisco Chinesta,
- Abstract要約: 本稿では1次元および2次元双曲偏微分方程式を解くためのデータ駆動有限体積法を提案する。
新しい材料は計算安定性を保証し、微細グリッド溶液の精度を維持し、全体的な性能を向上させる。
- 参考スコア(独自算出の注目度): 1.4999444543328293
- License:
- Abstract: This paper presents a data-driven finite volume method for solving 1D and 2D hyperbolic partial differential equations. This work builds upon the prior research incorporating a data-driven finite-difference approximation of smooth solutions of scalar conservation laws, where optimal coefficients of neural networks approximating space derivatives are learned based on accurate, but cumbersome solutions to these equations. We extend this approach to flux-limited finite volume schemes for hyperbolic scalar and systems of conservation laws. We also train the discretization to efficiently capture discontinuous solutions with shock and contact waves, as well as to the application of boundary conditions. The learning procedure of the data-driven model is extended through the definition of a new loss, paddings and adequate database. These new ingredients guarantee computational stability, preserve the accuracy of fine-grid solutions, and enhance overall performance. Numerical experiments using test cases from the literature in both one- and two-dimensional spaces demonstrate that the learned model accurately reproduces fine-grid results on very coarse meshes.
- Abstract(参考訳): 本稿では1次元および2次元双曲偏微分方程式を解くためのデータ駆動有限体積法を提案する。
この研究は、スカラー保存法則の滑らかな解の、データ駆動有限差分法近似を取り入れた以前の研究に基づいており、そこでは、空間微分を近似するニューラルネットワークの最適係数が、精度に基づいて学習されるが、これらの方程式に対する煩雑な解である。
このアプローチを、双曲スカラーと保存則の系に対するフラックス制限有限体積スキームに拡張する。
また,不連続解を衝撃波や接触波で効率よく捕捉し,境界条件の適用性を高めるために,離散化を訓練する。
データ駆動モデルの学習手順は、新しい損失、パディング、適切なデータベースの定義によって拡張される。
これらの新しい材料は、計算安定性を保証し、微細グリッドの解の精度を維持し、全体的な性能を向上させる。
1次元空間と2次元空間の両方の文献から得られたテストケースを用いた数値実験により、学習されたモデルは、非常に粗いメッシュ上での微細グリッドの結果を正確に再現することを示した。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Discovery and inversion of the viscoelastic wave equation in inhomogeneous media [3.6864706261549127]
現在のスパース回帰法はスパースおよびノイズデータセット上の不正確な方程式を特定することができる。
探索と埋め込みという2つの交互方向最適化フェーズを組み合わせたハイブリッドフレームワークを提案する。
提案手法は, 高レベルの騒音に直面しても, 優れたロバスト性と精度を示す。
論文 参考訳(メタデータ) (2024-09-27T01:05:45Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - A conservative hybrid physics-informed neural network method for
Maxwell-Amp\`{e}re-Nernst-Planck equations [22.81295238376119]
提案アルゴリズムはダミー変数の固有近似を自動決定する手段を提供する。
元の手法は2次元問題に対して検証される。
提案手法は,一次元の場合に容易に一般化できる。
論文 参考訳(メタデータ) (2023-12-10T13:58:41Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data [2.4431531175170362]
この研究では、ニューラルネットワーク、遺伝的アルゴリズム、適応的手法を組み合わせた新しいフレームワークが、これらの課題を同時に解決するために提案されている。
訓練されたニューラルネットワークを用いてデリバティブを計算し、大量のメタデータを生成し、スパースノイズデータの問題を解決する。
次に、遺伝的アルゴリズムを用いて、不完全候補ライブラリによるPDEと対応する係数の形式を発見する。
空間的あるいは時間的に異なる係数を持つパラメトリックPDEを発見するために、2段階適応法を導入する。
論文 参考訳(メタデータ) (2020-05-16T09:09:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。