論文の概要: Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data
- arxiv url: http://arxiv.org/abs/2005.07916v1
- Date: Sat, 16 May 2020 09:09:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 12:41:36.568383
- Title: Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data
- Title(参考訳): スパースデータと雑音データからのパラメトリック部分微分方程式の深層学習
- Authors: Hao Xu, Dongxiao Zhang, and Junsheng Zeng
- Abstract要約: この研究では、ニューラルネットワーク、遺伝的アルゴリズム、適応的手法を組み合わせた新しいフレームワークが、これらの課題を同時に解決するために提案されている。
訓練されたニューラルネットワークを用いてデリバティブを計算し、大量のメタデータを生成し、スパースノイズデータの問題を解決する。
次に、遺伝的アルゴリズムを用いて、不完全候補ライブラリによるPDEと対応する係数の形式を発見する。
空間的あるいは時間的に異なる係数を持つパラメトリックPDEを発見するために、2段階適応法を導入する。
- 参考スコア(独自算出の注目度): 2.4431531175170362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven methods have recently made great progress in the discovery of
partial differential equations (PDEs) from spatial-temporal data. However,
several challenges remain to be solved, including sparse noisy data, incomplete
candidate library, and spatially- or temporally-varying coefficients. In this
work, a new framework, which combines neural network, genetic algorithm and
adaptive methods, is put forward to address all of these challenges
simultaneously. In the framework, a trained neural network is utilized to
calculate derivatives and generate a large amount of meta-data, which solves
the problem of sparse noisy data. Next, genetic algorithm is utilized to
discover the form of PDEs and corresponding coefficients with an incomplete
candidate library. Finally, a two-step adaptive method is introduced to
discover parametric PDEs with spatially- or temporally-varying coefficients. In
this method, the structure of a parametric PDE is first discovered, and then
the general form of varying coefficients is identified. The proposed algorithm
is tested on the Burgers equation, the convection-diffusion equation, the wave
equation, and the KdV equation. The results demonstrate that this method is
robust to sparse and noisy data, and is able to discover parametric PDEs with
an incomplete candidate library.
- Abstract(参考訳): 近年,空間時間データから偏微分方程式(PDE)の発見において,データ駆動法が大きな進歩を遂げている。
しかし、スパースノイズデータ、不完全候補ライブラリ、空間的あるいは時間的変動係数など、いくつかの課題が解決されている。
本研究では,ニューラルネットワークと遺伝的アルゴリズム,適応的手法を組み合わせた新しいフレームワークを構築し,これらすべての課題を同時に解決する。
このフレームワークでは、トレーニングされたニューラルネットワークを使用してデリバティブを計算し、大量のメタデータを生成し、スパースノイズデータの問題を解決する。
次に、遺伝的アルゴリズムを用いて、不完全候補ライブラリによるPDEと対応する係数の形式を発見する。
最後に,空間的あるいは時間的変動係数を持つパラメトリックpdesを2段階適応的に検出する手法を提案する。
この方法では、パラメトリックPDEの構造が最初に発見され、次に様々な係数の一般形が同定される。
提案アルゴリズムはバーガース方程式,対流拡散方程式,波動方程式,KdV方程式で検証される。
その結果,この手法はスパースやノイズに頑健であり,不完全候補ライブラリを用いてパラメトリックpdesを探索できることがわかった。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
システム記述における不確実性定量化(UQ)のための多様体学習に基づく手法を提案する。
提案手法は高精度な近似を達成でき、UQタスクの大幅な高速化につながる。
論文 参考訳(メタデータ) (2021-07-21T00:24:15Z) - Deep-learning based discovery of partial differential equations in
integral form from sparse and noisy data [2.745859263816099]
上記の問題を同時に扱うために,ディープラーニングと積分形式を組み合わせた新しいフレームワークを提案する。
提案アルゴリズムは, 積分形式の利用により, 従来の手法と比較して, ノイズに強く, 精度が高い。
論文 参考訳(メタデータ) (2020-11-24T09:18:39Z) - Identifying Latent Stochastic Differential Equations [29.103393300261587]
本研究では,高次元時系列データから潜時微分方程式(SDE)を学習する手法を提案する。
提案手法は,自己教師付き学習手法を用いて,環境空間から潜時空間へのマッピングと,基礎となるSDE係数を学習する。
提案手法の検証には,SDEの基盤となる複数のビデオ処理タスク,および実世界のデータセットを用いて行う。
論文 参考訳(メタデータ) (2020-07-12T19:46:31Z) - Weak SINDy For Partial Differential Equations [0.0]
我々はWeak SINDy(WSINDy)フレームワークを偏微分方程式(PDE)の設定にまで拡張する。
弱い形状による点微分近似の除去は、ノイズフリーデータからモデル係数の効率的な機械的精度回復を可能にする。
我々は、いくつかの挑戦的なPDEに対して、WSINDyの堅牢性、速度、精度を実証する。
論文 参考訳(メタデータ) (2020-07-06T16:03:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。