論文の概要: Sharp-PINNs: staggered hard-constrained physics-informed neural networks for phase field modelling of corrosion
- arxiv url: http://arxiv.org/abs/2502.11942v1
- Date: Mon, 17 Feb 2025 15:56:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:08:32.221994
- Title: Sharp-PINNs: staggered hard-constrained physics-informed neural networks for phase field modelling of corrosion
- Title(参考訳): Sharp-PINNs:腐食の位相場モデリングのための頑強な物理インフォームニューラルネットワーク
- Authors: Nanxi Chen, Chuanjie Cui, Rujin Ma, Airong Chen, Sifan Wang,
- Abstract要約: 複素位相場腐食問題に対処する新しいシャープ-PINNフレームワークを提案する。
シャープ-PINNは、すべてのPDE残量を同時に最小化する代わりに、停滞したトレーニングスキームを導入している。
三次元の場合、従来の有限要素法よりも5~10倍高速である。
- 参考スコア(独自算出の注目度): 1.9060744600841886
- License:
- Abstract: Physics-informed neural networks have shown significant potential in solving partial differential equations (PDEs) across diverse scientific fields. However, their performance often deteriorates when addressing PDEs with intricate and strongly coupled solutions. In this work, we present a novel Sharp-PINN framework to tackle complex phase field corrosion problems. Instead of minimizing all governing PDE residuals simultaneously, the Sharp-PINNs introduce a staggered training scheme that alternately minimizes the residuals of Allen-Cahn and Cahn-Hilliard equations, which govern the corrosion system. To further enhance its efficiency and accuracy, we design an advanced neural network architecture that integrates random Fourier features as coordinate embeddings, employs a modified multi-layer perceptron as the primary backbone, and enforces hard constraints in the output layer. This framework is benchmarked through simulations of corrosion problems with multiple pits, where the staggered training scheme and network architecture significantly improve both the efficiency and accuracy of PINNs. Moreover, in three-dimensional cases, our approach is 5-10 times faster than traditional finite element methods while maintaining competitive accuracy, demonstrating its potential for real-world engineering applications in corrosion prediction.
- Abstract(参考訳): 物理インフォームドニューラルネットワークは、様々な科学分野にまたがる偏微分方程式(PDE)を解く大きな可能性を示している。
しかしながら、それらの性能は、複雑で強く結合されたソリューションでPDEに対処するときにしばしば悪化する。
本研究では,複雑な相場腐食問題に対処する新しいシャープ-PINNフレームワークを提案する。
シャープ-PINNは、全てのPDE残基を同時に最小化する代わりに、腐食系を支配するアレン・カーン方程式とカーン・ヒリアード方程式の残基を交互に最小化するスタッガードトレーニングスキームを導入した。
その効率と精度をさらに高めるために、ランダムなフーリエ特徴を座標埋め込みとして統合し、修正された多層パーセプトロンを一次バックボーンとして使用し、出力層に厳しい制約を課す、高度なニューラルネットワークアーキテクチャを設計する。
このフレームワークは,マルチピットによる腐食問題のシミュレーションを通じてベンチマークされ,遅延したトレーニングスキームとネットワークアーキテクチャによりPINNの効率と精度が大幅に向上する。
さらに, 従来の有限要素法よりも5~10倍高速で, 競争精度を保ちながら, 腐食予測における実世界の工学的応用の可能性を示した。
関連論文リスト
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)の安定性と精度の向上を目的とした,新しい残差ベースアーキテクチャを提案する。
このアーキテクチャは、残りの接続を組み込むことで従来のニューラルネットワークを強化し、よりスムーズなウェイト更新を可能にし、バックプロパゲーション効率を向上させる。
特にSquared Residual Networkは、従来のニューラルネットワークと比較して安定性と精度の向上を実現し、堅牢なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-10T05:20:43Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
我々は,エンコーダデコーダに基づく条件付きGeneLSTM層を用いたニューラルネットワークに基づく新しいフレームワークを開発し,Cahn-Hilliardマイクロ構造方程式を解く。
トレーニングされたモデルはメッシュとスケールに依存しないため、効果的なニューラル演算子としての応用が保証される。
論文 参考訳(メタデータ) (2022-11-22T08:32:22Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、最近、前方および逆問題の両方を解決する能力により、多くの注目を集めている。
そこで我々は, PINN の高次積分法を用いて, 硬質化学動力学を解ける新しい PINN アーキテクチャ, Reduced-PINN を提案する。
論文 参考訳(メタデータ) (2022-08-23T09:20:42Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。