論文の概要: DeepSeek vs. ChatGPT: A Comparative Study for Scientific Computing and Scientific Machine Learning Tasks
- arxiv url: http://arxiv.org/abs/2502.17764v1
- Date: Tue, 25 Feb 2025 01:49:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 17:42:45.639433
- Title: DeepSeek vs. ChatGPT: A Comparative Study for Scientific Computing and Scientific Machine Learning Tasks
- Title(参考訳): DeepSeek vs. ChatGPT:科学計算と科学機械学習の課題の比較研究
- Authors: Qile Jiang, Zhiwei Gao, George Em Karniadakis,
- Abstract要約: 大きな言語モデル(LLM)は、幅広い問題に対処するための強力なツールとして登場した。
我々は,最も先進的なLCM-ChatGPTとDeepSeek-の能力と,計算課題に対処するための推論最適化バージョンを比較した。
- 参考スコア(独自算出の注目度): 2.4249056411704384
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have emerged as powerful tools for tackling a wide range of problems, including those in scientific computing, particularly in solving partial differential equations (PDEs). However, different models exhibit distinct strengths and preferences, resulting in varying levels of performance. In this paper, we compare the capabilities of the most advanced LLMs--ChatGPT and DeepSeek--along with their reasoning-optimized versions in addressing computational challenges. Specifically, we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems. We designed all our experiments so that a non-trivial decision is required, e.g. defining the proper space of input functions for neural operator learning. Our findings reveal that the latest model, ChatGPT o3-mini-high, usually delivers the most accurate results while also responding significantly faster than its reasoning counterpart, DeepSeek R1. This enhanced speed and accuracy make ChatGPT o3-mini-high a more practical and efficient choice for diverse computational tasks at this juncture.
- Abstract(参考訳): 大規模言語モデル(LLM)は、科学計算、特に偏微分方程式(PDE)の解法など、幅広い問題に対処するための強力なツールとして登場した。
しかし、異なるモデルは異なる強さと好みを示し、様々なレベルのパフォーマンスをもたらす。
本稿では,最も先進的なLCMであるChatGPTとDeepSeekの能力と,計算課題に対処するための推論最適化バージョンを比較した。
具体的には、科学計算における従来の数値問題を解く能力と、PDEに基づく問題に科学的機械学習技術を活用する能力を評価する。
我々は、ニューラルネットワーク学習のための入力関数の適切な空間を定義するなど、非自明な決定が求められるように、全ての実験を設計した。
以上の結果から,最新のモデルであるChatGPT o3-mini-highは,最も正確な結果を提供すると同時に,推理モデルであるDeepSeek R1よりもはるかに高速に反応することがわかった。
この高速化と精度の向上により、ChatGPT o3-mini-highは、この分岐点における様々な計算タスクに対してより実用的で効率的な選択となる。
関連論文リスト
- Bag of Tricks for Inference-time Computation of LLM Reasoning [10.366475014241407]
複雑度の異なる推論タスクに対して,様々な推論時間計算戦略を検証・ベンチマークする。
我々のアブレーション研究は、これまで見過ごされていた戦略が性能を大幅に向上させることができることを示している。
我々は,8つの推論タスクにまたがる6つの代表的手法を体系的に評価することにより,推論時間計算の標準ベンチマークを確立する。
論文 参考訳(メタデータ) (2025-02-11T02:31:11Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1のようなモデルは、推論中に人間のような長時間の思考をエミュレートすることができる。
本論文は,これらのモデルにおける過度な考察の課題に関する,最初の包括的研究である。
精度を損なうことなく、過剰思考を緩和し、推論プロセスを合理化するための戦略を提案する。
論文 参考訳(メタデータ) (2024-12-30T18:55:12Z) - Transfer Operator Learning with Fusion Frame [0.0]
本研究は、部分微分方程式(PDE)を解くための演算子学習モデルの伝達学習能力を向上する新しいフレームワークを提案する。
我々は,融合フレームとPOD-DeepONetを組み合わせた革新的なアーキテクチャを導入し,実験解析において様々なPDEに対して優れた性能を示す。
我々のフレームワークは、オペレーターラーニングモデルにおけるトランスファーラーニングの重要な課題に対処し、幅広い科学的・工学的応用において適応的で効率的なソリューションの道を開く。
論文 参考訳(メタデータ) (2024-08-20T00:03:23Z) - Solving Differential Equations using Physics-Informed Deep Equilibrium Models [4.237218036051422]
本稿では、常微分方程式(ODE)の初期値問題(IVP)を解決する物理インフォームド・ディープ平衡モデル(PIDEQ)を提案する。
この研究は、深層学習と物理に基づくモデリングをブリッジすることで、IVPを解くための計算技術を進歩させ、科学計算と工学の応用に寄与する。
論文 参考訳(メタデータ) (2024-06-05T17:25:29Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
我々は、データ駆動アプローチが、工学や物理学の問題を解決する従来の手法を補完する方法についての洞察を提供する。
我々は,PDE演算子学習の解演算子を学習するための,新しい,高速な機械学習に基づくアプローチを強調した。
論文 参考訳(メタデータ) (2023-01-30T23:29:33Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Deep Learning Methods for Partial Differential Equations and Related
Parameter Identification Problems [1.7150329136228712]
偏微分方程式(PDE)の特定のクラスを解決するために、ますます多くのニューラルネットワークアーキテクチャが開発されている。
このような手法は、PDE固有の特性を利用して、標準フィードフォワードニューラルネットワーク、リカレントニューラルネットワーク、畳み込みニューラルネットワークよりも優れたPDEを解決する。
これは、パラメトリックPDEが科学や工学で生じるほとんどの自然および物理的プロセスのモデル化に広く使われている数学モデリングの領域に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-12-06T16:53:34Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Comparison of Distal Teacher Learning with Numerical and Analytical
Methods to Solve Inverse Kinematics for Rigid-Body Mechanisms [67.80123919697971]
私たちは、逆キネマティクス(DT)に対する最初の機械学習(ML)ソリューションの1つとして、微分可能なプログラミングライブラリを組み合わせると、実際には十分よいと論じています。
我々は,解答率,精度,サンプル効率,スケーラビリティを解析する。
十分なトレーニングデータと緩和精度の要求により、DTはより優れた解法率を持ち、15-DoF機構のための最先端の数値解法よりも高速である。
論文 参考訳(メタデータ) (2020-02-29T09:55:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。