論文の概要: DeepSeek vs. ChatGPT: A Comparative Study for Scientific Computing and Scientific Machine Learning Tasks
- arxiv url: http://arxiv.org/abs/2502.17764v1
- Date: Tue, 25 Feb 2025 01:49:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:22:49.335052
- Title: DeepSeek vs. ChatGPT: A Comparative Study for Scientific Computing and Scientific Machine Learning Tasks
- Title(参考訳): DeepSeek vs. ChatGPT:科学計算と科学機械学習の課題の比較研究
- Authors: Qile Jiang, Zhiwei Gao, George Em Karniadakis,
- Abstract要約: 大きな言語モデル(LLM)は、幅広い問題に対処するための強力なツールとして登場した。
我々は,最も先進的なLCM-ChatGPTとDeepSeek-の能力と,計算課題に対処するための推論最適化バージョンを比較した。
- 参考スコア(独自算出の注目度): 2.4249056411704384
- License:
- Abstract: Large Language Models (LLMs) have emerged as powerful tools for tackling a wide range of problems, including those in scientific computing, particularly in solving partial differential equations (PDEs). However, different models exhibit distinct strengths and preferences, resulting in varying levels of performance. In this paper, we compare the capabilities of the most advanced LLMs--ChatGPT and DeepSeek--along with their reasoning-optimized versions in addressing computational challenges. Specifically, we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems. We designed all our experiments so that a non-trivial decision is required, e.g. defining the proper space of input functions for neural operator learning. Our findings reveal that the latest model, ChatGPT o3-mini-high, usually delivers the most accurate results while also responding significantly faster than its reasoning counterpart, DeepSeek R1. This enhanced speed and accuracy make ChatGPT o3-mini-high a more practical and efficient choice for diverse computational tasks at this juncture.
- Abstract(参考訳): 大規模言語モデル(LLM)は、科学計算、特に偏微分方程式(PDE)の解法など、幅広い問題に対処するための強力なツールとして登場した。
しかし、異なるモデルは異なる強さと好みを示し、様々なレベルのパフォーマンスをもたらす。
本稿では,最も先進的なLCMであるChatGPTとDeepSeekの能力と,計算課題に対処するための推論最適化バージョンを比較した。
具体的には、科学計算における従来の数値問題を解く能力と、PDEに基づく問題に科学的機械学習技術を活用する能力を評価する。
我々は、ニューラルネットワーク学習のための入力関数の適切な空間を定義するなど、非自明な決定が求められるように、全ての実験を設計した。
以上の結果から,最新のモデルであるChatGPT o3-mini-highは,最も正確な結果を提供すると同時に,推理モデルであるDeepSeek R1よりもはるかに高速に反応することがわかった。
この高速化と精度の向上により、ChatGPT o3-mini-highは、この分岐点における様々な計算タスクに対してより実用的で効率的な選択となる。
関連論文リスト
- Bag of Tricks for Inference-time Computation of LLM Reasoning [10.366475014241407]
複雑度の異なる推論タスクに対して,様々な推論時間計算戦略を検証・ベンチマークする。
我々のアブレーション研究は、これまで見過ごされていた戦略が性能を大幅に向上させることができることを示している。
我々は,8つの推論タスクにまたがる6つの代表的手法を体系的に評価することにより,推論時間計算の標準ベンチマークを確立する。
論文 参考訳(メタデータ) (2025-02-11T02:31:11Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1のようなモデルは、推論中に人間のような長時間の思考をエミュレートすることができる。
本論文は,これらのモデルにおける過度な考察の課題に関する,最初の包括的研究である。
精度を損なうことなく、過剰思考を緩和し、推論プロセスを合理化するための戦略を提案する。
論文 参考訳(メタデータ) (2024-12-30T18:55:12Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - DiffVL: Scaling Up Soft Body Manipulation using Vision-Language Driven
Differentiable Physics [69.6158232150048]
DiffVLは、非専門家がソフトボディ操作タスクをコミュニケーションできるようにする手法である。
大規模言語モデルを用いてタスク記述を機械解釈可能な最適化対象に翻訳する。
論文 参考訳(メタデータ) (2023-12-11T14:29:25Z) - DLAS: An Exploration and Assessment of the Deep Learning Acceleration
Stack [3.7873597471903935]
私たちはDeep Learning Acceleration Stack (DLAS)で機械学習とシステム技術を組み合わせています。
2つのデータセット間でDLASのパラメータが異なる場合の精度と推定時間への影響を評価した。
全体として、圧縮技術によって提供されるスピードアップは、非常にハードウェアに依存している。
論文 参考訳(メタデータ) (2023-11-15T12:26:31Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Train Like a (Var)Pro: Efficient Training of Neural Networks with
Variable Projection [2.7561479348365734]
ディープニューラルネットワーク(DNN)は、さまざまな従来の機械学習タスクで最先端のパフォーマンスを達成した。
本稿では,多くの最先端アプリケーションで発生するDNNのトレーニングについて考察する。
論文 参考訳(メタデータ) (2020-07-26T16:29:39Z) - Comparison of Distal Teacher Learning with Numerical and Analytical
Methods to Solve Inverse Kinematics for Rigid-Body Mechanisms [67.80123919697971]
私たちは、逆キネマティクス(DT)に対する最初の機械学習(ML)ソリューションの1つとして、微分可能なプログラミングライブラリを組み合わせると、実際には十分よいと論じています。
我々は,解答率,精度,サンプル効率,スケーラビリティを解析する。
十分なトレーニングデータと緩和精度の要求により、DTはより優れた解法率を持ち、15-DoF機構のための最先端の数値解法よりも高速である。
論文 参考訳(メタデータ) (2020-02-29T09:55:45Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。