論文の概要: Plane-Wave Decomposition and Randomised Training; a Novel Path to Generalised PINNs for SHM
- arxiv url: http://arxiv.org/abs/2504.00249v2
- Date: Wed, 02 Apr 2025 14:59:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:18:38.079801
- Title: Plane-Wave Decomposition and Randomised Training; a Novel Path to Generalised PINNs for SHM
- Title(参考訳): 平面波分解とランダム化訓練 : SHMのための一般化PINNへの新たな道
- Authors: Rory Clements, James Ellis, Geoff Hassall, Simon Horsley, Gavin Tabor,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)の定式化について紹介する。
PINNは、フーリエ分解の形式を学習し、ランダムに選択された境界条件の拡散に基づく訓練手法である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we introduce a formulation of Physics-Informed Neural Networks (PINNs), based on learning the form of the Fourier decomposition, and a training methodology based on a spread of randomly chosen boundary conditions. By training in this way we produce a PINN that generalises; after training it can be used to correctly predict the solution for an arbitrary set of boundary conditions and interpolate this solution between the samples that spanned the training domain. We demonstrate for a toy system of two coupled oscillators that this gives the PINN formulation genuine predictive capability owing to an effective reduction of the training to evaluation times ratio due to this decoupling of the solution from specific boundary conditions.
- Abstract(参考訳): 本稿では、フーリエ分解の形式を学習した物理情報ニューラルネットワーク(PINN)の定式化と、ランダムに選択された境界条件の拡散に基づくトレーニング手法を提案する。
トレーニングの後、任意の境界条件の解を正しく予測し、トレーニング領域にまたがるサンプル間でこの解を補間することができる。
本研究では、2つの結合振動子からなる玩具システムにおいて、特定の境界条件からの解の分離によるトレーニングの効率の低下と評価時間比によるPINN定式化を真に予測できることを示す。
関連論文リスト
- A hybrid FEM-PINN method for time-dependent partial differential equations [9.631238071993282]
本稿では、時間有限要素法とディープニューラルネットワークを融合させることにより、進化微分方程式(PDE)を解くためのハイブリッド数値計算法を提案する。
このようなハイブリッドな定式化の利点は2つある: 統計誤差は時間方向の積分に対して回避され、ニューラルネットワークの出力は縮小された空間基底関数の集合と見なすことができる。
論文 参考訳(メタデータ) (2024-09-04T15:28:25Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Taper-based scattering formulation of the Helmholtz equation to improve the training process of Physics-Informed Neural Networks [0.0]
この研究は、2つの半無限導波路を接続する接合における入射波の散乱問題に対処する。
PINNはスペクトルバイアスとヘルムホルツ方程式の双曲的性質に悩まされていることが知られている。
我々はヘルムホルツ境界値問題の等価な定式化を提案する。
論文 参考訳(メタデータ) (2024-04-15T13:51:20Z) - Error Analysis of Physics-Informed Neural Networks for Approximating
Dynamic PDEs of Second Order in Time [1.123111111659464]
物理インフォームドニューラルネットワーク(PINN)による2次動的偏微分方程式(PDE)の近似について検討する。
分析の結果,2つの隠れ層と$tanh$アクティベーション関数を持つフィードフォワードニューラルネットワークでは,トレーニング損失とトレーニングデータポイント数によって,解場のPINN近似誤差を効果的にバウンドすることができることがわかった。
本稿では, 波動方程式, Sine-Gordon 方程式, 線形エラストダイナミック方程式に対する新しい PINN アルゴリズムを用いた数値実験を行った。
論文 参考訳(メタデータ) (2023-03-22T00:51:11Z) - A Novel Adaptive Causal Sampling Method for Physics-Informed Neural
Networks [35.25394937917774]
インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の解を得るための魅力的な機械学習手法である。
適応サンプリングに時間因果性を導入し,PINの性能と効率を向上させるための適応因果サンプリング手法を提案する。
本研究では, 比較的単純なサンプリング手法を用いることで, 予測性能を2桁まで向上できることを実証した。
論文 参考訳(メタデータ) (2022-10-24T01:51:08Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Deep Learning for the Benes Filter [91.3755431537592]
本研究では,メッシュのないニューラルネットワークによるベンズモデルの解の密度の表現に基づく新しい数値計算法を提案する。
ニューラルネットワークの領域選択におけるフィルタリングモデル方程式における非線形性の役割について論じる。
論文 参考訳(メタデータ) (2022-03-09T14:08:38Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。