論文の概要: A Unified Framework for Simultaneous Parameter and Function Discovery in Differential Equations
- arxiv url: http://arxiv.org/abs/2505.16996v1
- Date: Thu, 22 May 2025 17:56:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.542377
- Title: A Unified Framework for Simultaneous Parameter and Function Discovery in Differential Equations
- Title(参考訳): 微分方程式における同時パラメータと関数発見のための統一フレームワーク
- Authors: Shalev Manor, Mohammad Kohandel,
- Abstract要約: 微分方程式を含む逆問題は、しばしば未知のパラメータや関数をデータから特定する必要がある。
物理情報ニューラルネットワーク(PINN)のような既存のアプローチは、パラメータまたは関数の分離に有効であるが、解の非特異性により同時に適用される場合、課題に直面する可能性がある。
ユニークなソリューションが保証される条件を確立することで、これらの制限に対処するフレームワークを導入します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse problems involving differential equations often require identifying unknown parameters or functions from data. Existing approaches, such as Physics-Informed Neural Networks (PINNs), Universal Differential Equations (UDEs) and Universal Physics-Informed Neural Networks (UPINNs), are effective at isolating either parameters or functions but can face challenges when applied simultaneously due to solution non-uniqueness. In this work, we introduce a framework that addresses these limitations by establishing conditions under which unique solutions can be guaranteed. To illustrate, we apply it to examples from biological systems and ecological dynamics, demonstrating accurate and interpretable results. Our approach significantly enhances the potential of machine learning techniques in modeling complex systems in science and engineering.
- Abstract(参考訳): 微分方程式を含む逆問題は、しばしば未知のパラメータや関数をデータから特定する必要がある。
物理インフォームドニューラルネットワーク(PINN)、ユニバーサル微分方程式(UDE)、ユニバーサル物理インフォームドニューラルネットワーク(UPINN)といった既存のアプローチは、パラメータまたは関数の分離に有効であるが、解の非特異性により同時に適用された場合、課題に直面する可能性がある。
本研究では,一意の解決が保証される条件を確立することにより,これらの制約に対処する枠組みを導入する。
本研究は,生物システムと生態学の事例に応用し,正確かつ解釈可能な結果を示す。
我々のアプローチは、科学と工学における複雑なシステムのモデリングにおける機械学習技術の可能性を大幅に向上させる。
関連論文リスト
- An efficient wavelet-based physics-informed neural networks for singularly perturbed problems [0.0]
物理インフォームドニューラルネットワーク(英: Physics-informed Neural Network, PINN)は、物理学を微分方程式の形で利用し、複雑な問題に対処する深層学習モデルである。
本稿では, ウェーブレットに基づくPINNモデルを用いて, 急激な振動, 急勾配, 特異な挙動を持つ微分方程式の解に挑戦する。
提案手法は、従来のPINN、最近開発されたウェーブレットベースのPINN、その他の最先端の手法で大幅に改善される。
論文 参考訳(メタデータ) (2024-09-18T10:01:37Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations [0.0]
複雑な物理学では、解析的に解くのが難しい微分方程式がほとんどである。
近年, 物理インフォームドニューラルネットワークは, 様々な微分方程式の解法系において, 非常によく機能することが示されている。
論文 参考訳(メタデータ) (2023-01-28T07:53:26Z) - Design of Turing Systems with Physics-Informed Neural Networks [0.0]
反応拡散系の重要なパラメータを推論する手段として,物理インフォームドニューラルネットワークの利用について検討する。
提案手法は,10%未満の誤差で,異なるパターンモードや型に対してパラメータを推論できることを示す。
論文 参考訳(メタデータ) (2022-11-24T08:01:22Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
本研究は, 偏微分方程式(PDE)を, 希少かつノイズの多い表現データから検出する物理インフォームド・ディープラーニング・フレームワークを提案する。
本手法の有効性とロバスト性は, 数値的にも実験的にも, 種々のPDEシステムの発見において実証される。
結果として得られる計算フレームワークは、実用的な応用における閉形式モデル発見の可能性を示している。
論文 参考訳(メタデータ) (2020-05-05T22:13:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。