論文の概要: Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations
- arxiv url: http://arxiv.org/abs/2301.12118v1
- Date: Sat, 28 Jan 2023 07:53:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 18:55:04.197677
- Title: Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations
- Title(参考訳): 物理インフォームドニューラルネットワーク:微分方程式の解法における再パラメータ化の効果
- Authors: Siddharth Nand, Yuecheng Cai
- Abstract要約: 複雑な物理学では、解析的に解くのが難しい微分方程式がほとんどである。
近年, 物理インフォームドニューラルネットワークは, 様々な微分方程式の解法系において, 非常によく機能することが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential equations are used to model and predict the behaviour of complex
systems in a wide range of fields, and the ability to solve them is an
important asset for understanding and predicting the behaviour of these
systems. Complicated physics mostly involves difficult differential equations,
which are hard to solve analytically. In recent years, physics-informed neural
networks have been shown to perform very well in solving systems with various
differential equations. The main ways to approximate differential equations are
through penalty function and reparameterization. Most researchers use penalty
functions rather than reparameterization due to the complexity of implementing
reparameterization. In this study, we quantitatively compare physics-informed
neural network models with and without reparameterization using the
approximation error. The performance of reparameterization is demonstrated
based on two benchmark mechanical engineering problems, a one-dimensional bar
problem and a two-dimensional bending beam problem. Our results show that when
dealing with complex differential equations, applying reparameterization
results in a lower approximation error.
- Abstract(参考訳): 微分方程式は、様々な分野における複雑なシステムの振る舞いをモデル化し予測するために用いられ、それらを解決する能力は、これらのシステムの振る舞いを理解し予測するための重要な資産である。
複雑な物理学では、解析的に解くのが難しい微分方程式がほとんどである。
近年, 物理インフォームドニューラルネットワークは, 様々な微分方程式の解法系において非常によく機能することが示されている。
近似微分方程式の主な方法は、ペナルティ関数と再パラメータ化である。
ほとんどの研究者は、再パラメータ化を実装する複雑さのため、再パラメータ化よりもペナルティ関数を使用する。
本研究では,物理インフォームドニューラルネットワークモデルと近似誤差を用いた再パラメータ化の有無を定量的に比較する。
1次元バー問題と2次元曲げビーム問題という2つのベンチマーク機械工学的問題に基づいて再パラメータ化性能を示す。
その結果, 複素微分方程式を扱う場合, 再パラメータ化を適用すると近似誤差が小さくなることがわかった。
関連論文リスト
- Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations [0.0]
チェビシェフは、古典的および量子的ニューラルネットワークが微分方程式を解くための効率的なツールとして有望であることを示した。
我々は、このフレームワークを様々な問題に対して量子機械学習環境に適応し、一般化する。
その結果,量子デバイス上での微分方程式の短期的評価に対する有望なアプローチが示唆された。
論文 参考訳(メタデータ) (2023-12-14T18:46:35Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
訓練されたニューラルネットワークは普遍関数近似器として機能し、新しい方法で微分方程式を数値的に解くことができる。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にする上で有望であることを示している。
論文 参考訳(メタデータ) (2022-08-07T17:12:39Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - HyperPINN: Learning parameterized differential equations with
physics-informed hypernetworks [32.095262903584725]
本稿では,ハイパーネットワークを用いてパラメータ化から微分方程式を解くニューラルネットワークを学習するHyperPINNを提案する。
我々は、PDEとODEの両方の実験で、このタイプのモデルが、小さなサイズを維持する微分方程式に対するニューラルネットワークの解をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-10-28T17:50:09Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。