論文の概要: Spacetime Geometry of Denoising in Diffusion Models
- arxiv url: http://arxiv.org/abs/2505.17517v1
- Date: Fri, 23 May 2025 06:16:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.862335
- Title: Spacetime Geometry of Denoising in Diffusion Models
- Title(参考訳): 拡散モデルにおけるデノナイジングの時空間幾何学
- Authors: Rafał Karczewski, Markus Heinonen, Alison Pouplin, Søren Hauberg, Vikas Garg,
- Abstract要約: 本稿では,情報幾何学の枠組みを用いた拡散モデルに関する新しい視点を示す。
すべての雑音レベルを同時に捉えた雑音サンプルの集合が統計的多様体を形成することを示す。
遷移経路サンプリングにおけるこの幾何学的視点の実用的価値を示す。
- 参考スコア(独自算出の注目度): 20.644091294762678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel perspective on diffusion models using the framework of information geometry. We show that the set of noisy samples, taken across all noise levels simultaneously, forms a statistical manifold -- a family of denoising probability distributions. Interpreting the noise level as a temporal parameter, we refer to this manifold as spacetime. This manifold naturally carries a Fisher-Rao metric, which defines geodesics -- shortest paths between noisy points. Notably, this family of distributions is exponential, enabling efficient geodesic computation even in high-dimensional settings without retraining or fine-tuning. We demonstrate the practical value of this geometric viewpoint in transition path sampling, where spacetime geodesics define smooth sequences of Boltzmann distributions, enabling the generation of continuous trajectories between low-energy metastable states. Code is available at: https://github.com/Aalto-QuML/diffusion-spacetime-geometry.
- Abstract(参考訳): 本稿では,情報幾何学の枠組みを用いた拡散モデルに関する新しい視点を示す。
すべてのノイズレベルを同時に捉えた雑音のサンプルの集合が統計的多様体を形成し、確率分布を denoising する族であることを示す。
ノイズレベルを時間パラメータとして解釈し、この多様体を時空と呼ぶ。
この多様体は自然にフィッシャー・ラオ計量を持ち、測地線を定義する。
特に、この分布系は指数関数的であり、訓練や微調整をせずに高次元の設定でも効率的な測地計算が可能である。
時空測地学はボルツマン分布の滑らかな列を定義し、低エネルギー準安定状態間の連続的な軌跡の生成を可能にする。
コードは、https://github.com/Aalto-QuML/diffusion-spacetime-geometryで入手できる。
関連論文リスト
- Generative Learning for Slow Manifolds and Bifurcation Diagrams [0.35587965024910395]
条件付きスコアベース生成モデル(cSGM)は、あるラベルに条件付けされた対象分布から可塑性データを生成する能力を実証している。
本稿では,cSGMを用いて低次元(高次)スロー多様体を高速に初期化するためのフレームワークを提案する。
この条件付きサンプリングは、還元されたスローマンフォールドの幾何を明らかにするのに役立ち、あるいは分岐図において、''' の欠落した定常状態のセグメントをほぼ満たすのに役立つ。
論文 参考訳(メタデータ) (2025-04-29T02:38:44Z) - Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models [1.7810134788247751]
本研究では, 乱流によって受動的に対流する小物体の軌道に沿って, 空間・速度の欠落を再現する手法を提案する。
近年提案されているデータ駆動機械学習技術である条件付き生成拡散モデルを利用する。
論文 参考訳(メタデータ) (2024-10-31T14:26:10Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
本研究では、円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
後部推論のために,高速ギブズサンプリングに寄与するストラトノビッチ様拡張法を導入する。
本研究では,このモデルを用いて風向予測と走行歩行周期のパーセンテージを関節角度の関数として適用する実験を行った。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Score-based generative models learn manifold-like structures with
constrained mixing [2.843124313496295]
スコアベース生成モデルは低次元多様体上でのデータ分布をどうやって学習するか?
本研究では, 局所特徴ベクトルによる線形近似と部分空間を用いて, 訓練されたSBMのスコアモデルについて検討する。
学習されたベクトル場は、多様体内の非保存的場によってサンプルを混合するが、非多様体方向のエネルギー関数が存在するかのように通常の射影と調和する。
論文 参考訳(メタデータ) (2023-11-16T15:15:15Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Short and Straight: Geodesics on Differentiable Manifolds [6.85316573653194]
本研究では,測地線長を最小化するための既存の手法をまず解析する。
次に,連続多様体上の距離場と測地流のモデルに基づくパラメータ化を提案する。
第3に,Ricciスカラーのより大きい値を示す多様体の領域において,曲率に基づくトレーニング機構,サンプリングおよびスケーリングポイントを開発する。
論文 参考訳(メタデータ) (2023-05-24T15:09:41Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Trajectory Inference via Mean-field Langevin in Path Space [0.17205106391379024]
軌道推論は、時間的限界のスナップショットから集団のダイナミクスを回復することを目的としている。
経路空間におけるウィナー測度に対するミンエントロピー推定器は、Lavenantらによって導入された。
論文 参考訳(メタデータ) (2022-05-14T23:13:00Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。