論文の概要: Parameter Identification for Partial Differential Equation with Jump Discontinuities in Coefficients by Markov Switching Model and Physics-Informed Machine Learning
- arxiv url: http://arxiv.org/abs/2510.14656v1
- Date: Thu, 16 Oct 2025 13:12:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.865124
- Title: Parameter Identification for Partial Differential Equation with Jump Discontinuities in Coefficients by Markov Switching Model and Physics-Informed Machine Learning
- Title(参考訳): マルコフスイッチングモデルと物理インフォームド機械学習による係数のジャンプ不連続部分微分方程式のパラメータ同定
- Authors: Zhikun Zhang, Guanyu Pan, Xiangjun Wang, Yong Xu, Guangtao Zhang,
- Abstract要約: 本研究では,物理インフォームド・ディープ・ラーニングとベイズ推論を統合した新しいフレームワークを提案する。
不連続なパラメータ空間における混合構造を特定するために、複素時間系の隠れ状態遷移を捉えるためにマルコフ力学法を用いる。
本研究では,不連続なパラメータ構造を持つPDEに対するパラメータ同定の一般化可能な計算手法を提案する。
- 参考スコア(独自算出の注目度): 13.124899777324602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse problems involving partial differential equations (PDEs) with discontinuous coefficients are fundamental challenges in modeling complex spatiotemporal systems with heterogeneous structures and uncertain dynamics. Traditional numerical and machine learning approaches often face limitations in addressing these problems due to high dimensionality, inherent nonlinearity, and discontinuous parameter spaces. In this work, we propose a novel computational framework that synergistically integrates physics-informed deep learning with Bayesian inference for accurate parameter identification in PDEs with jump discontinuities in coefficients. The core innovation of our framework lies in a dual-network architecture employing a gradient-adaptive weighting strategy: a main network approximates PDE solutions while a sub network samples its coefficients. To effectively identify mixture structures in parameter spaces, we employ Markovian dynamics methods to capture hidden state transitions of complex spatiotemporal systems. The framework has applications in reconstruction of solutions and identification of parameter-varying regions. Comprehensive numerical experiments on various PDEs with jump-varying coefficients demonstrate the framework's exceptional adaptability, accuracy, and robustness compared to existing methods. This study provides a generalizable computational approach of parameter identification for PDEs with discontinuous parameter structures, particularly in non-stationary or heterogeneous systems.
- Abstract(参考訳): 不連続係数を持つ偏微分方程式(PDE)を含む逆問題は、不均一な構造と不確実な力学を持つ複素時空間系をモデル化する際の根本的な課題である。
従来の数値と機械学習のアプローチは、高次元性、固有の非線形性、不連続なパラメータ空間のために、これらの問題に対処する際の制限に直面していることが多い。
本研究では,PDEにおけるパラメータ同定のための物理インフォームドディープラーニングとベイズ推論を相乗的に統合し,係数のジャンプ不連続性を考慮した新しい計算フレームワークを提案する。
メインネットワークはPDEの解を近似し、サブネットワークはその係数をサンプリングする。
パラメータ空間における混合構造を効果的に同定するために,複素時空間系の隠れ状態遷移を捕捉するマルコフ力学法を用いる。
このフレームワークは、解の再構成とパラメータ変化領域の同定に応用できる。
ジャンプ係数の異なる様々なPDEに関する総合的な数値実験は、既存の手法と比較して、フレームワークの例外的な適応性、正確性、堅牢性を示している。
本研究では,不連続なパラメータ構造を持つPDEに対するパラメータ同定の一般化可能な計算手法を提案する。
関連論文リスト
- Gaussian process surrogate with physical law-corrected prior for multi-coupled PDEs defined on irregular geometry [3.3798563347021093]
パラメトリック偏微分方程式(パラメトリック偏微分方程式、PDE)は、複雑な物理系をモデル化するための基本的な数学的ツールである。
本稿では,新しい物理法則補正前ガウス過程 (LC-prior GP) サロゲートモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-01T02:40:32Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Parameter Identification for Partial Differential Equations with
Spatiotemporal Varying Coefficients [5.373009527854677]
種々の偏微分方程式によって制御される多状態系のパラメータ同定を容易にする枠組みを提案する。
我々のフレームワークは、制約付き自己適応型ニューラルネットワークと、サブネットワーク物理インフォームドニューラルネットワークの2つの統合コンポーネントで構成されている。
我々は,時間変化パラメータを持つ1次元バーガースの場合と空間変化パラメータを持つ2次元波動方程式の2つの数値ケースにおいて,本フレームワークの有効性を実証した。
論文 参考訳(メタデータ) (2023-06-30T07:17:19Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
本稿では,PDEのパラメータ・ツー・ソリューション(前方)と解・ツー・パラメータ(逆)マップを同時に学習する物理駆動型ディープ潜在変数モデル(PDDLVM)を提案する。
提案フレームワークは、観測データをシームレスに統合し、逆問題を解決するとともに、生成モデルを構築するために容易に拡張できる。
有限要素離散パラメトリックPDE問題に対して,本手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-09T15:40:53Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。