論文の概要: An overview on deep learning-based approximation methods for partial
differential equations
- arxiv url: http://arxiv.org/abs/2012.12348v2
- Date: Fri, 5 Mar 2021 10:53:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:14:27.246408
- Title: An overview on deep learning-based approximation methods for partial
differential equations
- Title(参考訳): 偏微分方程式に対する深層学習に基づく近似法の概要
- Authors: Christian Beck, Martin Hutzenthaler, Arnulf Jentzen, Benno Kuckuck
- Abstract要約: これは高次元偏微分方程式(PDE)を近似的に解くための応用数学における最も難しい問題の1つである。
この問題に対処するための深層学習に基づく近似アルゴリズムが提案され、高次元PDEの多くの例で数値的に検証されている。
これは、深層学習に基づく手法とそれに関連するモンテカルロ法を高次元PDEの近似に適用する研究の活発な分野を生み出しました。
- 参考スコア(独自算出の注目度): 2.4087148947930634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is one of the most challenging problems in applied mathematics to
approximatively solve high-dimensional partial differential equations (PDEs).
Recently, several deep learning-based approximation algorithms for attacking
this problem have been proposed and tested numerically on a number of examples
of high-dimensional PDEs. This has given rise to a lively field of research in
which deep learning-based methods and related Monte Carlo methods are applied
to the approximation of high-dimensional PDEs. In this article we offer an
introduction to this field of research, we review some of the main ideas of
deep learning-based approximation methods for PDEs, we revisit one of the
central mathematical results for deep neural network approximations for PDEs,
and we provide an overview of the recent literature in this area of research.
- Abstract(参考訳): これは高次元偏微分方程式(PDE)を近似的に解くための応用数学における最も難しい問題の1つである。
近年,この問題に対する深層学習に基づく近似アルゴリズムが提案され,高次元PDEの例で数値的に検証されている。
このことは、深層学習に基づく手法と関連するモンテカルロ法を高次元pdesの近似に適用する活発な研究分野を生み出した。
本稿では,この研究分野の紹介,PDEの深層学習に基づく近似法の主な考え方,PDEの深部ニューラルネットワーク近似における中心的な数学的結果の1つを再考し,最近の研究分野の文献の概要を紹介する。
関連論文リスト
- An Overview on Machine Learning Methods for Partial Differential Equations: from Physics Informed Neural Networks to Deep Operator Learning [5.75055574132362]
数値アルゴリズムによる偏微分方程式の解の近似は、応用数学における中心的なトピックである。
近年多くの注目を集めている手法の1つは、機械学習に基づく手法である。
本稿では,これらの手法の紹介と,それらに基づく数学的理論について述べる。
論文 参考訳(メタデータ) (2024-08-23T16:57:34Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Partial Differential Equations Meet Deep Neural Networks: A Survey [10.817323756266527]
科学と工学の問題は、数学的モデリングを通して偏微分方程式(PDE)の集合で表すことができる。
PDEに続くメカニズムベースの計算は、長い間、計算流体力学のようなトピックを研究する上で欠かせないパラダイムであった。
PDEを解く効果的な手段として、深層ニューラルネットワーク(DNN)が登場している。
論文 参考訳(メタデータ) (2022-10-27T07:01:56Z) - Robust SDE-Based Variational Formulations for Solving Linear PDEs via
Deep Learning [6.1678491628787455]
モンテカルロ法とディープラーニングを組み合わせることで、高次元の偏微分方程式(PDE)を解くアルゴリズムが効率的になった。
関連する学習問題は、しばしば関連する微分方程式(SDE)に基づく変分定式化として記述される。
したがって、収束を正確にかつ迅速に到達するためには、低分散を示す適切な勾配推定器に頼ることが重要である。
論文 参考訳(メタデータ) (2022-06-21T17:59:39Z) - Finite Expression Method for Solving High-Dimensional Partial
Differential Equations [5.736353542430439]
本稿では,有限個の解析式を持つ関数空間における近似PDE解を求める新しい手法を提案する。
FEXは次元の呪いを避けることができるという近似理論で証明されている。
有限解析式を持つ近似解はまた、基底真理 PDE 解に対する解釈可能な洞察を与える。
論文 参考訳(メタデータ) (2022-06-21T05:51:10Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Adversarial Multi-task Learning Enhanced Physics-informed Neural
Networks for Solving Partial Differential Equations [9.823102211212582]
本稿では,多タスク学習手法,不確実性強調損失,勾配手術を学習pdeソリューションの文脈で活用する新しいアプローチを提案する。
実験では,提案手法が有効であることが判明し,従来手法と比較して未発見のデータポイントの誤差を低減できた。
論文 参考訳(メタデータ) (2021-04-29T13:17:46Z) - A Survey on Deep Semi-supervised Learning [51.26862262550445]
まず,既存の手法を分類した深層半指導学習の分類法を提案する。
次に、損失の種類、貢献度、アーキテクチャの違いの観点から、これらのメソッドを詳細に比較します。
論文 参考訳(メタデータ) (2021-02-28T16:22:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。