論文の概要: Adversarial Sampling for Solving Differential Equations with Neural
Networks
- arxiv url: http://arxiv.org/abs/2111.12024v1
- Date: Sat, 20 Nov 2021 06:39:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 14:30:35.325524
- Title: Adversarial Sampling for Solving Differential Equations with Neural
Networks
- Title(参考訳): ニューラルネットワークを用いた微分方程式の逆サンプリング
- Authors: Kshitij Parwani, Pavlos Protopapas
- Abstract要約: 本稿では,現在の解推定値の損失を最大化するために,逆向きに点をサンプリングする新しいサンプリング手法を提案する。
本手法は, 既設のスキームよりも多くの問題を比較した結果, 性能が向上することが実証された。
- 参考スコア(独自算出の注目度): 1.9341156634212364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network-based methods for solving differential equations have been
gaining traction. They work by improving the differential equation residuals of
a neural network on a sample of points in each iteration. However, most of them
employ standard sampling schemes like uniform or perturbing equally spaced
points. We present a novel sampling scheme which samples points adversarially
to maximize the loss of the current solution estimate. A sampler architecture
is described along with the loss terms used for training. Finally, we
demonstrate that this scheme outperforms pre-existing schemes by comparing both
on a number of problems.
- Abstract(参考訳): 微分方程式を解くニューラルネットワークに基づく手法が注目を集めている。
彼らは、各イテレーションの点のサンプル上でニューラルネットワークの微分方程式残差を改善することで機能する。
しかし、そのほとんどは等間隔点の均一化や摂動といった標準的なサンプリング方式を採用している。
本稿では,現在の解推定の損失を最大化するために,反対に点をサンプリングする新しいサンプリング方式を提案する。
サンプルアーキテクチャは、トレーニングに使用される損失項とともに記述される。
最後に,このスキームが既存のスキームよりも多くの問題で比較することにより,既存のスキームを上回ることを実証する。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
正規微分方程式(ODE)の解に対する乱射影ニューラルネットワーク(RPNN)に基づく数値スキームを提案する。
提案手法は剛性の影響を受けずに高い数値近似精度を示し,textttode45 と textttode15s の関数よりも優れていた。
論文 参考訳(メタデータ) (2021-08-03T15:49:17Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
本研究では,教師なしニューラルネットワークを用いた微分方程式の解法を開発した。
差分方程式GAN (DEQGAN) と呼ばれる手法は, 平均二乗誤差を桁違いに低減できることを示す。
論文 参考訳(メタデータ) (2020-07-21T23:36:36Z) - Bandit Samplers for Training Graph Neural Networks [63.17765191700203]
グラフ畳み込みネットワーク(GCN)の訓練を高速化するために, ばらつきを低減したサンプリングアルゴリズムが提案されている。
これらのサンプリングアルゴリズムは、グラフ注意ネットワーク(GAT)のような固定重みよりも学習重量を含む、より一般的なグラフニューラルネットワーク(GNN)には適用できない。
論文 参考訳(メタデータ) (2020-06-10T12:48:37Z) - Learning To Solve Differential Equations Across Initial Conditions [12.66964917876272]
多くのニューラルネットワークに基づく偏微分方程式解法が定式化され、古典的解法よりも性能が同等であり、場合によってはさらに優れている。
本研究では,任意の初期条件に対する偏微分方程式の解を条件付き確率分布の学習として近似する問題を提案する。
論文 参考訳(メタデータ) (2020-03-26T21:29:22Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
スパースサンプリングされた場所のみの機能を計算することを提案する。
次に、効率的な手順で特徴写像を密に再構築する。
提案したネットワークは、様々なコンピュータビジョンタスクの精度を維持しながら、かなりの計算を省くために実験的に示されている。
論文 参考訳(メタデータ) (2020-03-19T15:36:31Z) - Domain Adaptation: Learning Bounds and Algorithms [80.85426994513541]
本稿では,任意の損失関数を持つ適応問題に適した分布距離,差分距離を新たに導入する。
広い損失関数族に対する領域適応のための新しい一般化境界を導出する。
また、正規化に基づくアルゴリズムの大規模クラスに対する新しい適応境界も提示する。
論文 参考訳(メタデータ) (2009-02-19T18:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。