論文の概要: FinNet: Solving Time-Independent Differential Equations with Finite
Difference Neural Network
- arxiv url: http://arxiv.org/abs/2202.09282v1
- Date: Fri, 18 Feb 2022 16:05:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-21 15:59:00.736085
- Title: FinNet: Solving Time-Independent Differential Equations with Finite
Difference Neural Network
- Title(参考訳): finnet:有限差分ニューラルネットワークによる時間独立微分方程式の解法
- Authors: Son N. T. Tu, Thu Nguyen
- Abstract要約: FinNetは、有限差分をディープラーニングに組み込むことで微分方程式を解くために導入された。
トレーニングフェーズではメッシュを使用しますが、予測フェーズはメッシュフリーです。
種々の方程式の解法に関する実験を通して,本手法の有効性について述べる。
- 参考スコア(独自算出の注目度): 3.448338949969246
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, deep learning approaches for partial differential equations
have received much attention due to their mesh-freeness and other desirable
properties. However, most of the works so far concentrated on time-dependent
nonlinear differential equations. In this work, we analyze potential issues
with the well-known Physic Informed Neural Network for differential equations
that are not time-dependent. This analysis motivates us to introduce a novel
technique, namely FinNet, for solving differential equations by incorporating
finite difference into deep learning. Even though we use a mesh during the
training phase, the prediction phase is mesh-free. We illustrate the
effectiveness of our method through experiments on solving various equations.
- Abstract(参考訳): 近年、偏微分方程式に対する深層学習のアプローチは、メッシュ自由性やその他の望ましい性質のために多くの注目を集めている。
しかし、これまでの研究のほとんどは時間依存の非線形微分方程式に集中している。
本研究では、時間に依存しない微分方程式に対するよく知られた物理情報ニューラルネットワークによる潜在的な問題を分析する。
この解析は,有限差分を深層学習に組み込むことで微分方程式を解くための新しい手法であるfinnetを導入する動機付けとなる。
トレーニングフェーズではメッシュを使っていますが、予測フェーズはメッシュフリーです。
様々な方程式の解法について実験を行い,提案手法の有効性を示す。
関連論文リスト
- PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
時間差分方程式を解くために, 革新的物理モデル駆動ニューラルネットワーク (PMNN) 法を提案する。
ディープニューラルネットワーク(DNN)と分数微分の近似を効果的に組み合わせる。
論文 参考訳(メタデータ) (2023-10-07T12:43:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - One-Shot Transfer Learning of Physics-Informed Neural Networks [2.6084034060847894]
本稿では,通常の微分方程式と偏微分方程式の両方の線形系に対して,一発の推論結果をもたらす伝達学習PINNの枠組みを提案する。
これは、多くの未知の微分方程式に対する高精度な解は、ネットワーク全体を再訓練することなく瞬時に得られることを意味する。
論文 参考訳(メタデータ) (2021-10-21T17:14:58Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Physics-informed neural networks for the shallow-water equations on the
sphere [0.0]
物理誘導ニューラルネットワークは、所定の初期および境界データと共に微分方程式を満たすように訓練される。
比較的長い時間間隔のテストケースに取り組むための単純なマルチモデルアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-01T16:47:40Z) - Solving non-linear Kolmogorov equations in large dimensions by using
deep learning: a numerical comparison of discretization schemes [16.067228939231047]
非線形偏微分コルモゴロフ方程式は、幅広い時間依存現象を記述するのに有効である。
深層学習は、これらの方程式を高次元で解くために導入された。
本研究では, 観測された計算の複雑性に影響を与えることなく, 精度の向上が可能であることを示す。
論文 参考訳(メタデータ) (2020-12-09T07:17:26Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Finite Difference Neural Networks: Fast Prediction of Partial
Differential Equations [5.575293536755126]
データから偏微分方程式を学習するための新しいニューラルネットワークフレームワークである有限差分ニューラルネットワーク(FDNet)を提案する。
具体的には、トラジェクトリデータから基礎となる偏微分方程式を学習するために提案した有限差分ネットワークを設計する。
論文 参考訳(メタデータ) (2020-06-02T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。