論文の概要: Barren plateaus in quantum tensor network optimization
- arxiv url: http://arxiv.org/abs/2209.00292v3
- Date: Sun, 2 Apr 2023 09:49:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 00:57:38.437175
- Title: Barren plateaus in quantum tensor network optimization
- Title(参考訳): 量子テンソルネットワーク最適化におけるバレン高原
- Authors: Enrique Cervero Mart\'in, Kirill Plekhanov, Michael Lubasch
- Abstract要約: 行列積状態(qMPS)、ツリーテンソルネットワーク(qTTN)、およびマルチスケールエンタングルメント再正規化アンサッツ(qMERA)にインスパイアされた量子回路の変動最適化を解析する。
量子テンソルネットワークの正準中心からハミルトン項の距離に比例して,コスト関数勾配のばらつきが指数関数的に減少することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze the barren plateau phenomenon in the variational optimization of
quantum circuits inspired by matrix product states (qMPS), tree tensor networks
(qTTN), and the multiscale entanglement renormalization ansatz (qMERA). We
consider as the cost function the expectation value of a Hamiltonian that is a
sum of local terms. For randomly chosen variational parameters we show that the
variance of the cost function gradient decreases exponentially with the
distance of a Hamiltonian term from the canonical centre in the quantum tensor
network. Therefore, as a function of qubit count, for qMPS most gradient
variances decrease exponentially and for qTTN as well as qMERA they decrease
polynomially. We also show that the calculation of these gradients is
exponentially more efficient on a classical computer than on a quantum
computer.
- Abstract(参考訳): 行列積状態(qMPS)、ツリーテンソルネットワーク(qTTN)、およびマルチスケールエンタングルメント再正規化アンサッツ(qMERA)にインスパイアされた量子回路の変動最適化におけるバレンプラトー現象を解析した。
コスト関数として、局所項の和であるハミルトニアンの期待値を考える。
ランダムに選択された変動パラメータに対して、コスト関数勾配の分散は量子テンソルネットワークの正準中心からハミルトン項の距離と指数関数的に減少することを示す。
したがって、qMPS の量子ビット数関数として、ほとんどの勾配分散は指数関数的に減少し、qTTN と qMERA は多項式的に減少する。
また、これらの勾配の計算は量子コンピュータよりも古典的コンピュータの方が指数関数的に効率的であることを示す。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Truncation technique for variational quantum eigensolver for Molecular
Hamiltonians [0.0]
変分量子固有解法(VQE)はノイズ量子デバイスのための最も有望な量子アルゴリズムの1つである。
そこで本研究では, トランケートされたハミルトニアンを用いて, 最適化手順を開始する物理直感的なトランケーション手法を提案する。
この戦略により、量子コンピュータ上でのハミルトニアンの期待値に対する必要な評価回数を減らすことができる。
論文 参考訳(メタデータ) (2024-02-02T18:45:12Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
量子トモグラフィーは、物理学における量子系の密度行列$rho$を計算するのに欠かせない道具となっている。
一般散乱過程におけるヘリシティ量子初期状態の再構成に関する理論的枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-16T21:23:42Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
ワーッセルシュタイン量子モンテカルロ (WQMC) はフィッシャー・ラオ計量ではなくワーッセルシュタイン計量によって誘導される勾配流を用いており、テレポートではなく確率質量の輸送に対応する。
我々は、WQMCの力学が分子系の基底状態へのより高速な収束をもたらすことを実証的に実証した。
論文 参考訳(メタデータ) (2023-07-06T17:54:08Z) - Absence of barren plateaus and scaling of gradients in the energy optimization of isometric tensor network states [0.0]
広いハミルトンと有限範囲の相互作用を持つ量子多体系のエネルギー問題を考える。
行列積状態,木テンソルネットワーク,およびマルチスケールエンタングル化再正規化アンサッツに対する変分最適化問題は,バレンプラトーを含まないことを証明した。
論文 参考訳(メタデータ) (2023-03-31T22:49:49Z) - Tensor Factorized Recursive Hamiltonian Downfolding To Optimize The Scaling Complexity Of The Electronic Correlations Problem on Classical and Quantum Computers [0.15833270109954137]
本稿では,高コストシミュレーションのための最適化スケーリングを伴う,ハートリー・フォック・ハミルトンのダウンフォールディングに基づく量子化学法を新たに提案する。
古典計算機と量子コンピュータの両方で高価な量子化学アルゴリズムの超クアッドレート高速化を実証する。
論文 参考訳(メタデータ) (2023-03-13T12:15:54Z) - Hamiltonian variational ansatz without barren plateaus [0.0]
変分量子アルゴリズムは、短期量子コンピュータの最も有望な応用の1つである。
その大きな可能性にもかかわらず、数十量子ビットを超える変分量子アルゴリズムの有用性は疑問視されている。
論文 参考訳(メタデータ) (2023-02-16T19:01:26Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
臨界近傍の量子系の低エネルギー力学が有限絡みによってどのように変化するかを研究する。
その結果、時間依存的臨界現象における絡み合いによる正確な役割が確立された。
論文 参考訳(メタデータ) (2023-01-23T19:23:54Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
量子ニューラルネットワーク(QNN)は、現代の量子マシンの力を発揮する。
ハンドクラフト対称アンサーゼを持つQNNは、一般に非対称アンサーゼを持つものよりも訓練性が高い。
本稿では,QNNのグローバル最適収束を定量化するために,実効量子ニューラルネットワークカーネル(EQNTK)を提案する。
論文 参考訳(メタデータ) (2022-08-30T08:17:55Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Mitigated barren plateaus in the time-nonlocal optimization of analog
quantum-algorithm protocols [0.0]
変分量子アルゴリズムのようなアルゴリズムクラスは、バレンプラトーに苦しむことが示されている。
本稿では,ハミルトニアン系パラメータのトレーニング可能なフーリエ係数に基づく量子アルゴリズムの最適化手法を提案する。
論文 参考訳(メタデータ) (2021-11-15T21:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。