論文の概要: KoopmanLab: machine learning for solving complex physics equations
- arxiv url: http://arxiv.org/abs/2301.01104v3
- Date: Sun, 19 Mar 2023 13:44:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 00:52:26.078872
- Title: KoopmanLab: machine learning for solving complex physics equations
- Title(参考訳): KoopmanLab: 複雑な物理方程式を解く機械学習
- Authors: Wei Xiong, Muyuan Ma, Xiaomeng Huang, Ziyang Zhang, Pei Sun, Yang Tian
- Abstract要約: 解析解や閉形式を使わずにPDEを学習するための、クープマンニューラルオペレータファミリーの効率的なモジュールであるクープマンLabを提案する。
我々のモジュールは、メッシュに依存しないニューラルネットワークベースのPDEソルバの一種であるクープマンニューラル演算子(KNO)の複数の変種から構成されている。
KNO のコンパクトな変種はモデルサイズが小さい PDE を正確に解くことができるが、KNO の大きな変種は高度に複雑な力学系を予測する上でより競争力がある。
- 参考スコア(独自算出の注目度): 7.815723299913228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous physics theories are rooted in partial differential equations
(PDEs). However, the increasingly intricate physics equations, especially those
that lack analytic solutions or closed forms, have impeded the further
development of physics. Computationally solving PDEs by classic numerical
approaches suffers from the trade-off between accuracy and efficiency and is
not applicable to the empirical data generated by unknown latent PDEs. To
overcome this challenge, we present KoopmanLab, an efficient module of the
Koopman neural operator family, for learning PDEs without analytic solutions or
closed forms. Our module consists of multiple variants of the Koopman neural
operator (KNO), a kind of mesh-independent neural-network-based PDE solvers
developed following dynamic system theory. The compact variants of KNO can
accurately solve PDEs with small model sizes while the large variants of KNO
are more competitive in predicting highly complicated dynamic systems govern by
unknown, high-dimensional, and non-linear PDEs. All variants are validated by
mesh-independent and long-term prediction experiments implemented on
representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers
equation in fluid mechanics) and ERA5 (i.e., one of the largest high-resolution
global-scale climate data sets in earth physics). These demonstrations suggest
the potential of KoopmanLab to be a fundamental tool in diverse physics studies
related to equations or dynamic systems.
- Abstract(参考訳): 多くの物理学理論は偏微分方程式(PDE)に根ざしている。
しかし、より複雑な物理学方程式、特に解析解や閉形式を持たない方程式は、物理学のさらなる発展を妨げる。
古典的数値的アプローチによるPDEの計算的解法は、精度と効率のトレードオフに悩まされており、未知の潜伏PDEが生成する経験的データには適用できない。
この課題を克服するために、分析解や閉形式を使わずにPDEを学習するための、Koopman Neural operator familyの効率的なモジュールであるKoopmanLabを提案する。
我々のモジュールは、メッシュに依存しないニューラルネットワークベースのPDEソルバの一種であるクープマンニューラル演算子(KNO)の複数の変種から構成される。
knoのコンパクトな変種は、小さなモデルサイズで正確にpdesを解くことができ、knoの大きな変種は、未知、高次元、非線形のpdesによって制御される非常に複雑な動的システムの予測においてより競争力がある。
全ての変種は、代表的PDE(例えば、流体力学におけるナビエ・ストークス方程式とベイトマン・バーガース方程式)とERA5(地球物理学における最大の高解像度の地球規模の気候データセットの1つである)に実装されたメッシュ非依存および長期予測実験によって検証される。
これらの実証は、コープマンラブが方程式や力学系に関連する多様な物理学研究の基本的な道具となる可能性を示唆している。
関連論文リスト
- Physics-informed Neural Networks for Functional Differential Equations: Cylindrical Approximation and Its Convergence Guarantees [7.366405857677226]
関数微分方程式(FDE)の第一学習法を提案する。
FDEは物理学、数学、最適制御において基本的な役割を果たす。
FDEの数値近似が開発されたが、しばしば解を単純化する。
論文 参考訳(メタデータ) (2024-10-23T06:16:35Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
物理シミュレーションに潜時拡散モデルを適用する方法をいくつか紹介する。
提案手法は、現在のニューラルPDEソルバと、精度と効率の両面で競合することを示す。
スケーラブルで正確で使用可能な物理シミュレータを導入することで、ニューラルPDEソルバを実用化に近づけたいと思っています。
論文 参考訳(メタデータ) (2024-10-02T01:09:47Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
我々はPDEパラメータと不規則領域形状の様々な離散表現に一般化できる新しい物理インフォームドモデルアーキテクチャを提案する。
ディープ・オペレーター・ニューラルネットワークにインスパイアされた我々のモデルは、パラメータの繰り返し埋め込みの離散化に依存しない学習を含む。
提案手法の精度と効率を数値計算により検証した。
論文 参考訳(メタデータ) (2024-04-21T12:41:30Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Koopman neural operator as a mesh-free solver of non-linear partial differential equations [15.410070455154138]
これらの課題を克服するために,新しいニューラル演算子であるクープマンニューラル演算子(KNO)を提案する。
力学系のすべての可能な観測を統括する無限次元作用素であるクープマン作用素を近似することにより、非線型PDEファミリーの解を等価に学べる。
KNOは、従来の最先端モデルと比較して顕著なアドバンテージを示している。
論文 参考訳(メタデータ) (2023-01-24T14:10:15Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - NeuralPDE: Modelling Dynamical Systems from Data [0.44259821861543996]
本稿では、畳み込みニューラルネットワーク(CNN)と微分可能なODEソルバを組み合わせて動的システムをモデル化するモデルであるNeuralPDEを提案する。
標準PDEソルバで使用されるラインの手法は、CNNが任意のPDEダイナミクスをパラメトリズする自然な選択となる畳み込みを用いて表現できることを示す。
我々のモデルは、PDEの管理に関する事前の知識を必要とせずに、あらゆるデータに適用することができる。
論文 参考訳(メタデータ) (2021-11-15T10:59:52Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。