論文の概要: Machine Learning for Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2303.17078v1
- Date: Thu, 30 Mar 2023 00:57:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 14:54:59.244298
- Title: Machine Learning for Partial Differential Equations
- Title(参考訳): 部分微分方程式の機械学習
- Authors: Steven L. Brunton and J. Nathan Kutz
- Abstract要約: 偏微分方程式 (Partial differential equation, PDE) は、自然物理法則の最も普遍的で同相な記述の一つである。
このレビューでは、機械学習によって進歩しているPDE研究のいくつかの有望な道について検討する。
- 参考スコア(独自算出の注目度): 5.90315016882222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial differential equations (PDEs) are among the most universal and
parsimonious descriptions of natural physical laws, capturing a rich variety of
phenomenology and multi-scale physics in a compact and symbolic representation.
This review will examine several promising avenues of PDE research that are
being advanced by machine learning, including: 1) the discovery of new
governing PDEs and coarse-grained approximations for complex natural and
engineered systems, 2) learning effective coordinate systems and reduced-order
models to make PDEs more amenable to analysis, and 3) representing solution
operators and improving traditional numerical algorithms. In each of these
fields, we summarize key advances, ongoing challenges, and opportunities for
further development.
- Abstract(参考訳): 偏微分方程式 (Partial differential equation, PDE) は、自然物理法則の最も普遍的で同義的な記述であり、多種多様な現象論と多スケール物理学をコンパクトで象徴的な表現で捉えている。
本総説では,機械学習を応用したPDE研究の今後の展望について述べる。
1) 複雑な自然系および工学系に対する新しい支配的pdesの発見と粗粒度近似
2)PDEを解析しやすくするための効果的な座標系と低次モデルを学習し、
3)解演算子の表現と従来の数値アルゴリズムの改善。
それぞれの分野では、重要な進歩、進行中の課題、さらなる発展の機会を要約します。
関連論文リスト
- Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Finite Element Operator Network for Solving Parametric PDEs [10.855582917943092]
偏微分方程式(PDE)は自然現象の理解と予測の基盤となる。
有限要素演算子ネットワーク(FEONet)を用いたパラメトリックPDEの解法を提案する。
論文 参考訳(メタデータ) (2023-08-09T03:56:07Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - KoopmanLab: machine learning for solving complex physics equations [7.815723299913228]
解析解や閉形式を使わずにPDEを学習するための、クープマンニューラルオペレータファミリーの効率的なモジュールであるクープマンLabを提案する。
我々のモジュールは、メッシュに依存しないニューラルネットワークベースのPDEソルバの一種であるクープマンニューラル演算子(KNO)の複数の変種から構成されている。
KNO のコンパクトな変種はモデルサイズが小さい PDE を正確に解くことができるが、KNO の大きな変種は高度に複雑な力学系を予測する上でより競争力がある。
論文 参考訳(メタデータ) (2023-01-03T13:58:39Z) - Partial Differential Equations Meet Deep Neural Networks: A Survey [10.817323756266527]
科学と工学の問題は、数学的モデリングを通して偏微分方程式(PDE)の集合で表すことができる。
PDEに続くメカニズムベースの計算は、長い間、計算流体力学のようなトピックを研究する上で欠かせないパラダイムであった。
PDEを解く効果的な手段として、深層ニューラルネットワーク(DNN)が登場している。
論文 参考訳(メタデータ) (2022-10-27T07:01:56Z) - Multi-scale Physical Representations for Approximating PDE Solutions
with Graph Neural Operators [14.466945570499183]
EmphMessage Passing Graph Neural Networks (MPGNN) を近似した積分カーネル演算子を用いた3つのマルチレゾリューションスキーマについて検討する。
本研究では, 定常かつ非定常なPDEを考慮したMPGNN実験を行った。
論文 参考訳(メタデータ) (2022-06-29T14:42:03Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
本研究は, 偏微分方程式(PDE)を, 希少かつノイズの多い表現データから検出する物理インフォームド・ディープラーニング・フレームワークを提案する。
本手法の有効性とロバスト性は, 数値的にも実験的にも, 種々のPDEシステムの発見において実証される。
結果として得られる計算フレームワークは、実用的な応用における閉形式モデル発見の可能性を示している。
論文 参考訳(メタデータ) (2020-05-05T22:13:22Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
本手法は,複雑な物理系の理解に成功し,PDEに関わるタスクに対してそれらを制御できることを実証する。
論文 参考訳(メタデータ) (2020-01-21T11:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。