論文の概要: Neural Astrophysical Wind Models
- arxiv url: http://arxiv.org/abs/2306.11666v1
- Date: Tue, 20 Jun 2023 16:37:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 13:36:43.972979
- Title: Neural Astrophysical Wind Models
- Title(参考訳): 神経天体風モデル
- Authors: Dustin D. Nguyen
- Abstract要約: 本研究は, 直交常微分方程式 (ODE) に個々の項として埋め込まれたディープニューラルネットワークが, これらの物理の双方をしっかりと発見できることを示す。
我々は、3つの保存変数を明示的に解決するのではなく、マッハ数に基づく損失関数を最適化し、近分散解に対してペナルティ項を適用する。
この研究は、非線形逆問題に対する機械論的解釈性を備えた有望な発見ツールとしてのニューラルODEの実現性をさらに強調する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The bulk kinematics and thermodynamics of hot supernovae-driven galactic
winds is critically dependent on both the amount of swept up cool clouds and
non-spherical collimated flow geometry. However, accurately parameterizing
these physics is difficult because their functional forms are often unknown,
and because the coupled non-linear flow equations contain singularities. We
show that deep neural networks embedded as individual terms in the governing
coupled ordinary differential equations (ODEs) can robustly discover both of
these physics, without any prior knowledge of the true function structure, as a
supervised learning task. We optimize a loss function based on the Mach number,
rather than the explicitly solved-for 3 conserved variables, and apply a
penalty term towards near-diverging solutions. The same neural network
architecture is used for learning both the hidden mass-loading and surface area
expansion rates. This work further highlights the feasibility of neural ODEs as
a promising discovery tool with mechanistic interpretability for non-linear
inverse problems.
- Abstract(参考訳): 熱い超新星を駆動する銀河風のバルク運動と熱力学は、急激な冷却雲の量と非球面コリメートフロー幾何学の両方に依存する。
しかしながら、これらの物理を正確にパラメータ化することは、それらの機能形式がしばしば未知であり、結合された非線形フロー方程式が特異点を含むため困難である。
本研究では, 直交常微分方程式 (ODE) に個々の項として埋め込まれたディープニューラルネットワークが, 教師付き学習課題として, 真の関数構造に関する事前の知識を必要とせず, 両者をしっかりと発見できることを示す。
我々は,3変数を明示的に解くのではなく,マッハ数に基づく損失関数を最適化し,近似平均解に対してペナルティ項を適用する。
同じニューラルネットワークアーキテクチャを使って、隠れたマスローディングと表面積の拡大率の両方を学ぶ。
この研究は、非線形逆問題に対する機械論的解釈性を備えた有望な発見ツールとしてのニューラルODEの実現性をさらに強調する。
関連論文リスト
- KAN/MultKAN with Physics-Informed Spline fitting (KAN-PISF) for ordinary/partial differential equation discovery of nonlinear dynamic systems [0.0]
動的システムの物理的理解を開発するためには、機械学習モデルを解釈する必要がある。
本研究では, (SRDD) アルゴリズムをデノナイズするための逐次正規化導関数を含む方程式発見フレームワークを提案し, 式構造を同定し, 関連する非線形関数を提案する。
論文 参考訳(メタデータ) (2024-11-18T18:14:51Z) - A Tutorial on the Use of Physics-Informed Neural Networks to Compute the Spectrum of Quantum Systems [0.9374652839580183]
本稿では、あるポテンシャルに対してシュリンガー方程式を解くことができる物理インフォームドニューラルネットワーク(PINN)の構築方法について述べる。
PINNは、メッシュのない方法で積分差分方程式を解くために、自動微分を利用するディープラーニング手法である。
論文 参考訳(メタデータ) (2024-07-30T09:07:03Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
流体力学方程式を解くには、しばしばミクロ物理学の欠如を考慮に入れた閉包関係を用いる必要がある。
本研究では, 終端微分可能な偏微分方程式シミュレータを用いて, 偏微分ニューラルネットワークを訓練する。
本手法により, 非線形, 大型クヌーズン数プラズマ物理を再現する方程式に基づく手法が可能であることを示す。
論文 参考訳(メタデータ) (2023-06-19T06:02:53Z) - An Analysis of Physics-Informed Neural Networks [0.0]
我々は物理システム – 物理インフォームドニューラルネットワーク – に対する解を近似する新しいアプローチを提案する。
人工ニューラルネットワークの概念を導入し、目的関数を定義し、最適化戦略について議論する。
偏微分方程式は、問題の損失関数の制約として含まれ、ネットワークがモデリングしている物理系の力学の知識にアクセスできる。
論文 参考訳(メタデータ) (2023-03-06T04:45:53Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery
of Nonlinear Partial Differential Operators from Data [0.0]
データから微分方程式のような物理法則を発見するために機械学習モデルを使うことへの関心が高まっている。
ニューラルネットワークとして機能データを管理することを学習する「リーフモジュール」からなる新しいモデルを提案する。
提案手法は,演算子に対する後続分布の観点から学習物理の信頼性を定量化し,この不確実性を新しい初期有界値問題インスタンスの解に伝達する。
論文 参考訳(メタデータ) (2020-06-07T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。