論文の概要: Good Lattice Training: Physics-Informed Neural Networks Accelerated by
Number Theory
- arxiv url: http://arxiv.org/abs/2307.13869v1
- Date: Wed, 26 Jul 2023 00:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 14:07:21.178400
- Title: Good Lattice Training: Physics-Informed Neural Networks Accelerated by
Number Theory
- Title(参考訳): 優れた格子トレーニング:数理論による物理情報ニューラルネットワーク
- Authors: Takashi Matsubara, Takaharu Yaguchi
- Abstract要約: 本稿では,PINNのためのGLT(Good lattice Training)と呼ばれる新しい手法を提案する。
GLT は、少数の点や多次元空間に対しても有効であるコロケーション点の集合を提供する。
実験の結果、GLTはランダムサンプリングやラテンハイパーキューブサンプリングよりも2~20倍少ないコロケーションポイントを必要とすることがわかった。
- 参考スコア(独自算出の注目度): 7.462336024223669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) offer a novel and efficient approach
to solving partial differential equations (PDEs). Their success lies in the
physics-informed loss, which trains a neural network to satisfy a given PDE at
specific points and to approximate the solution. However, the solutions to PDEs
are inherently infinite-dimensional, and the distance between the output and
the solution is defined by an integral over the domain. Therefore, the
physics-informed loss only provides a finite approximation, and selecting
appropriate collocation points becomes crucial to suppress the discretization
errors, although this aspect has often been overlooked. In this paper, we
propose a new technique called good lattice training (GLT) for PINNs, inspired
by number theoretic methods for numerical analysis. GLT offers a set of
collocation points that are effective even with a small number of points and
for multi-dimensional spaces. Our experiments demonstrate that GLT requires
2--20 times fewer collocation points (resulting in lower computational cost)
than uniformly random sampling or Latin hypercube sampling, while achieving
competitive performance.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を解くための、新しく効率的なアプローチを提供する。
彼らの成功は、与えられたPDEを特定の点で満たし、解を近似するためにニューラルネットワークを訓練する物理インフォームド損失にある。
しかし、PDEの解は本質的に無限次元であり、出力と解の間の距離は領域上の積分によって定義される。
したがって、物理情報損失は有限近似しか得られず、離散化誤差を抑制するためには適切なコロケーション点を選択することが重要である。
本稿では,数値解析の数値論的手法に触発されて,優れた格子学習(GLT)と呼ばれる新しい手法を提案する。
GLT は、少数の点や多次元空間に対しても有効であるコロケーション点の集合を提供する。
実験の結果,GLTでは一様ランダムサンプリングやラテンハイパーキューブサンプリングよりも2~20倍のコロケーションポイント(計算コストの削減)が必要であり,競争性能が向上した。
関連論文リスト
- Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - Global Convergence of Deep Galerkin and PINNs Methods for Solving
Partial Differential Equations [0.0]
ニューラルネットワークを用いて解を近似することにより、高次元PDEを解くための様々なディープラーニング手法が開発されている。
我々はPDEの解法であるDeep Galerkin MethodDGM(ディープ・ガレルキン・メソッドDGM)の解法として広く使われているディープラーニングアルゴリズムの1つである。
論文 参考訳(メタデータ) (2023-05-10T09:20:11Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解の強力な近似器である
PINN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
AL-PINNは、最先端の適応的損失分散アルゴリズムと比較して、相対誤差がはるかに小さいことを様々な数値実験で示している。
論文 参考訳(メタデータ) (2022-04-29T08:33:11Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
本稿では,未知多様体上の楕円型PDEを解くためのメッシュフリー計算フレームワークと機械学習理論を提案する。
提案したNNソルバは,新しいデータポイント上の一般化とほぼ同一の誤差を持つ新しいデータポイント上でPDEを強固に一般化できることを示す。
論文 参考訳(メタデータ) (2021-06-12T03:55:15Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。