論文の概要: Good Lattice Training: Physics-Informed Neural Networks Accelerated by
Number Theory
- arxiv url: http://arxiv.org/abs/2307.13869v1
- Date: Wed, 26 Jul 2023 00:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 14:07:21.178400
- Title: Good Lattice Training: Physics-Informed Neural Networks Accelerated by
Number Theory
- Title(参考訳): 優れた格子トレーニング:数理論による物理情報ニューラルネットワーク
- Authors: Takashi Matsubara, Takaharu Yaguchi
- Abstract要約: 本稿では,PINNのためのGLT(Good lattice Training)と呼ばれる新しい手法を提案する。
GLT は、少数の点や多次元空間に対しても有効であるコロケーション点の集合を提供する。
実験の結果、GLTはランダムサンプリングやラテンハイパーキューブサンプリングよりも2~20倍少ないコロケーションポイントを必要とすることがわかった。
- 参考スコア(独自算出の注目度): 7.462336024223669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) offer a novel and efficient approach
to solving partial differential equations (PDEs). Their success lies in the
physics-informed loss, which trains a neural network to satisfy a given PDE at
specific points and to approximate the solution. However, the solutions to PDEs
are inherently infinite-dimensional, and the distance between the output and
the solution is defined by an integral over the domain. Therefore, the
physics-informed loss only provides a finite approximation, and selecting
appropriate collocation points becomes crucial to suppress the discretization
errors, although this aspect has often been overlooked. In this paper, we
propose a new technique called good lattice training (GLT) for PINNs, inspired
by number theoretic methods for numerical analysis. GLT offers a set of
collocation points that are effective even with a small number of points and
for multi-dimensional spaces. Our experiments demonstrate that GLT requires
2--20 times fewer collocation points (resulting in lower computational cost)
than uniformly random sampling or Latin hypercube sampling, while achieving
competitive performance.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を解くための、新しく効率的なアプローチを提供する。
彼らの成功は、与えられたPDEを特定の点で満たし、解を近似するためにニューラルネットワークを訓練する物理インフォームド損失にある。
しかし、PDEの解は本質的に無限次元であり、出力と解の間の距離は領域上の積分によって定義される。
したがって、物理情報損失は有限近似しか得られず、離散化誤差を抑制するためには適切なコロケーション点を選択することが重要である。
本稿では,数値解析の数値論的手法に触発されて,優れた格子学習(GLT)と呼ばれる新しい手法を提案する。
GLT は、少数の点や多次元空間に対しても有効であるコロケーション点の集合を提供する。
実験の結果,GLTでは一様ランダムサンプリングやラテンハイパーキューブサンプリングよりも2~20倍のコロケーションポイント(計算コストの削減)が必要であり,競争性能が向上した。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations [7.890817997914349]
ニューラルネットワークに基づくアプローチは、最近、科学と工学における偏微分方程式(PDE)の解法において大きな可能性を示している。
PDEのためのニューラルネットワーク手法の利点の1つは、その自動微分(AD)にある。
本稿では、ニューラルネットワークのトレーニングにおけるADの利点を定量的に示す。
論文 参考訳(メタデータ) (2024-05-23T02:01:05Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - On Theory-training Neural Networks to Infer the Solution of Highly
Coupled Differential Equations [0.0]
高度に結合した微分方程式の解を学習するための理論学習ネットワークに関する知見を提示する。
本稿では,正規化を活用することにより,これらの振動を除去し,最終的なトレーニング損失を低減し,推定解の精度を向上させる理論学習手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T15:45:08Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。