論文の概要: Diffusion Representation for Asymmetric Kernels
- arxiv url: http://arxiv.org/abs/2401.12251v1
- Date: Sat, 20 Jan 2024 19:56:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 17:52:48.722983
- Title: Diffusion Representation for Asymmetric Kernels
- Title(参考訳): 非対称カーネルの拡散表現
- Authors: Alvaro Almeida Gomez, Antonio Silva Neto, Jorge zubelli
- Abstract要約: 拡散写像形式を非対称核によって誘導されるデータセットに拡張する。
次元還元を行うアルゴリズムを提案する。
結果と他の固有値展開の結果を比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We extend the diffusion-map formalism to data sets that are induced by
asymmetric kernels. Analytical convergence results of the resulting expansion
are proved, and an algorithm is proposed to perform the dimensional reduction.
In this work we study data sets in which its geometry structure is induced by
an asymmetric kernel. We use a priori coordinate system to represent this
geometry and, thus, be able to improve the computational complexity of reducing
the dimensionality of data sets. A coordinate system connected to the tensor
product of Fourier basis is used to represent the underlying geometric
structure obtained by the diffusion-map, thus reducing the dimensionality of
the data set and making use of the speedup provided by the two-dimensional Fast
Fourier Transform algorithm (2-D FFT). We compare our results with those
obtained by other eigenvalue expansions, and verify the efficiency of the
algorithms with synthetic data, as well as with real data from applications
including climate change studies.
- Abstract(参考訳): 拡散写像形式を非対称カーネルによって誘導されるデータセットに拡張する。
その結果, 解析的な収束結果が証明され, 次元還元を行うアルゴリズムが提案されている。
本研究では,その幾何学構造が非対称核によって誘導されるデータセットについて検討する。
我々はこの幾何を表現するために事前座標系を用い、したがってデータセットの次元性を減少させる計算複雑性を向上させることができる。
フーリエ基底のテンソル積に接続された座標系を用いて拡散写像によって得られる基底幾何学構造を表現することにより、データセットの次元性を低減し、2次元高速フーリエ変換アルゴリズム(2次元FFT)によって提供されるスピードアップを利用する。
その結果を他の固有値展開で得られた結果と比較し、アルゴリズムの効率を合成データとともに検証し、気候変動研究を含む実際のデータと比較した。
関連論文リスト
- Thinner Latent Spaces: Detecting dimension and imposing invariance through autoencoder gradient constraints [9.380902608139902]
ネットワークの潜在層内の直交関係を利用して、非線形多様体データセットの内在次元性を推定できることを示す。
微分幾何学に依拠する関係理論を概説し、対応する勾配偏光最適化アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-08-28T20:56:35Z) - Oracle-Preserving Latent Flows [58.720142291102135]
我々はラベル付きデータセット全体にわたって複数の非自明な連続対称性を同時に発見するための方法論を開発する。
対称性変換と対応するジェネレータは、特別に構築された損失関数で訓練された完全連結ニューラルネットワークでモデル化される。
この研究における2つの新しい要素は、縮小次元の潜在空間の使用と、高次元のオラクルに関して不変な変換への一般化である。
論文 参考訳(メタデータ) (2023-02-02T00:13:32Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
測度空間上での幾何散乱の一般統一モデルを導入する。
未知多様体をランダムにサンプリングして得られる有限測度空間を考える。
本稿では, 関連するグラフ散乱変換が基礎多様体上の散乱変換を近似するデータ駆動グラフを構築するための2つの方法を提案する。
論文 参考訳(メタデータ) (2022-08-17T22:40:09Z) - Fiberwise dimensionality reduction of topologically complex data with
vector bundles [0.0]
本稿では,ベクトルバンドルを用いてトポロジ的に複雑なデータセットをモデル化する。
基底空間は大規模位相であり、ファイバーは局所幾何学である。
これにより、大規模なトポロジーを保ちながら繊維の寸法を小さくすることができる。
論文 参考訳(メタデータ) (2022-06-13T22:53:46Z) - Manifold embedding data-driven mechanics [0.0]
本稿では、可逆ニューラルネットワークによって生成された多様体の埋め込みを利用する、新しいデータ駆動型アプローチを紹介する。
深層ニューラルネットワークを訓練して、多様体から低次元ユークリッドベクトル空間にデータをグローバルにマッピングする。
論文 参考訳(メタデータ) (2021-12-18T04:38:32Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
システム記述における不確実性定量化(UQ)のための多様体学習に基づく手法を提案する。
提案手法は高精度な近似を達成でき、UQタスクの大幅な高速化につながる。
論文 参考訳(メタデータ) (2021-07-21T00:24:15Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
論文 参考訳(メタデータ) (2021-06-14T17:19:44Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。