論文の概要: Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
- arxiv url: http://arxiv.org/abs/2405.06119v1
- Date: Thu, 9 May 2024 21:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:16:40.220460
- Title: Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
- Title(参考訳): 分離型ニューラルネットワークを用いたグラディエントフローに基づく位相場モデリング
- Authors: Revanth Mattey, Susanta Ghosh,
- Abstract要約: 勾配流問題の解法として, 位相場の分離可能なニューラルネットワークによる近似を最小化運動方式で提案する。
提案手法は相分離問題に対する最先端の機械学習手法よりも優れている。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $L^2$ gradient flow of the Ginzburg-Landau free energy functional leads to the Allen Cahn equation that is widely used for modeling phase separation. Machine learning methods for solving the Allen-Cahn equation in its strong form suffer from inaccuracies in collocation techniques, errors in computing higher-order spatial derivatives through automatic differentiation, and the large system size required by the space-time approach. To overcome these limitations, we propose a separable neural network-based approximation of the phase field in a minimizing movement scheme to solve the aforementioned gradient flow problem. At each time step, the separable neural network is used to approximate the phase field in space through a low-rank tensor decomposition thereby accelerating the derivative calculations. The minimizing movement scheme naturally allows for the use of Gauss quadrature technique to compute the functional. A `$tanh$' transformation is applied on the neural network-predicted phase field to strictly bounds the solutions within the values of the two phases. For this transformation, a theoretical guarantee for energy stability of the minimizing movement scheme is established. Our results suggest that bounding the solution through this transformation is the key to effectively model sharp interfaces through separable neural network. The proposed method outperforms the state-of-the-art machine learning methods for phase separation problems and is an order of magnitude faster than the finite element method.
- Abstract(参考訳): ギンズバーグ・ランダウ自由エネルギー汎関数の$L^2$勾配流は、位相分離をモデル化するために広く用いられるアレン・カーン方程式に導かれる。
アレン・カーン方程式を強形式で解く機械学習手法は、コロケーション手法の不正確さ、自動微分による高次空間微分の計算誤差、時空アプローチで必要とされるシステムサイズに悩まされている。
これらの制限を克服するため、上記の勾配流問題を解くための最小化運動スキームにおいて、相場の分離可能なニューラルネットワークに基づく近似を提案する。
各時間ステップにおいて、分離可能なニューラルネットワークを用いて、低ランクテンソル分解により空間の位相場を近似し、導関数計算を高速化する。
最小化運動スキームは自然にガウス二次法を用いて関数を計算することができる。
ニューラルネットワーク予測相場に `$tanh$' 変換を適用して、2つの相の値内の解を厳密に束縛する。
この変換のために、最小化運動スキームのエネルギー安定性に関する理論的保証を確立する。
この変換によって解をバウンディングすることが、分離可能なニューラルネットワークによるシャープインターフェースを効果的にモデル化する鍵であることを示唆している。
提案手法は相分離問題に対する最先端の機械学習手法よりも優れており,有限要素法よりも桁違いに高速である。
関連論文リスト
- Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Towards a machine learning pipeline in reduced order modelling for
inverse problems: neural networks for boundary parametrization,
dimensionality reduction and solution manifold approximation [0.0]
逆問題、特に偏微分方程式の文脈では、膨大な計算負荷を必要とする。
ニューラルネットワークを用いた数値パイプラインを用いて,問題の境界条件のパラメータ化を行う。
これは、インレット境界のアドホックなパラメトリゼーションを提供することができ、迅速に最適解に収束する一般的な枠組みに由来する。
論文 参考訳(メタデータ) (2022-10-26T14:53:07Z) - A DeepParticle method for learning and generating aggregation patterns
in multi-dimensional Keller-Segel chemotaxis systems [3.6184545598911724]
ケラー・セガル (KS) ケモタキシー系の2次元および3次元における凝集パターンと近傍特異解の正則化相互作用粒子法について検討した。
さらに,物理パラメータの異なる解を学習し,生成するためのDeepParticle (DP) 法を開発した。
論文 参考訳(メタデータ) (2022-08-31T20:52:01Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - Error-Correcting Neural Networks for Semi-Lagrangian Advection in the
Level-Set Method [0.0]
本稿では,画像超解像技術とスカラートランスポートを融合した機械学習フレームワークを提案する。
我々は,インターフェースの粗いメッシュ進化における数値粘度を最小化するために,オンザフライデータ駆動補正を計算できるかどうかを検討する。
論文 参考訳(メタデータ) (2021-10-22T06:36:15Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
本研究では,統計的学習フレームワークにおいて,正しい前処理変換を自動的に検出する問題にアプローチする。
純粋にデータ駆動方式により、線形部分空間操作の既存のアプローチを未知の対流場を持つ非線形双曲問題に一般化することができる。
提案アルゴリズムは、その性能をベンチマークするために単純なテストケースに対して検証され、その後、多相シミュレーションに成功している。
論文 参考訳(メタデータ) (2021-08-14T15:13:35Z) - De-homogenization using Convolutional Neural Networks [1.0323063834827415]
本稿では,構造コンプライアンス最小化のための深層学習に基づく非均質化手法を提案する。
パラメータの適切な選択のために、非均質化設計は、均質化に基づく解の7-25%以内で実行される。
論文 参考訳(メタデータ) (2021-05-10T09:50:06Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。