論文の概要: Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics
- arxiv url: http://arxiv.org/abs/2406.01539v1
- Date: Mon, 3 Jun 2024 17:16:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:00:59.779780
- Title: Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics
- Title(参考訳): 物理インフォームド深層学習と高次元拡散反応方程式の圧縮コロケーション:実用的存在論と数値
- Authors: Simone Brugiapaglia, Nick Dexter, Samir Karam, Weiqi Wang,
- Abstract要約: ディープラーニング(DL)に基づく高次元偏微分方程式の効率的な解法の開発と解析
理論的にも数値的にも,新しい安定かつ高精度なスペクトルコロケーション法と競合できることを示す。
- 参考スコア(独自算出の注目度): 5.380276949049726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: On the forefront of scientific computing, Deep Learning (DL), i.e., machine learning with Deep Neural Networks (DNNs), has emerged a powerful new tool for solving Partial Differential Equations (PDEs). It has been observed that DNNs are particularly well suited to weakening the effect of the curse of dimensionality, a term coined by Richard E. Bellman in the late `50s to describe challenges such as the exponential dependence of the sample complexity, i.e., the number of samples required to solve an approximation problem, on the dimension of the ambient space. However, although DNNs have been used to solve PDEs since the `90s, the literature underpinning their mathematical efficiency in terms of numerical analysis (i.e., stability, accuracy, and sample complexity), is only recently beginning to emerge. In this paper, we leverage recent advancements in function approximation using sparsity-based techniques and random sampling to develop and analyze an efficient high-dimensional PDE solver based on DL. We show, both theoretically and numerically, that it can compete with a novel stable and accurate compressive spectral collocation method. In particular, we demonstrate a new practical existence theorem, which establishes the existence of a class of trainable DNNs with suitable bounds on the network architecture and a sufficient condition on the sample complexity, with logarithmic or, at worst, linear scaling in dimension, such that the resulting networks stably and accurately approximate a diffusion-reaction PDE with high probability.
- Abstract(参考訳): 科学計算の最前線では、Deep Learning(DL)、すなわちDeep Neural Networks(DNN)による機械学習が、部分微分方程式(PDE)を解く強力な新しいツールとして登場した。
DNNは特に、50年代後半にリチャード・ベルマン(Richard E. Bellman)が提唱した「次元の呪い」の効果を弱めるのに適している。
しかし、DNNは90年代以降、PDEの解法として使われてきたが、数値解析(安定性、精度、サンプルの複雑さなど)でそれらの数学的効率を支えている文献は、最近現れ始めたばかりである。
本稿では,分散度に基づく手法とランダムサンプリングを用いた関数近似の最近の進歩を活用し,DLに基づく効率的な高次元PDEソルバの開発と解析を行う。
理論的にも数値的にも,新しい安定かつ高精度なスペクトルコロケーション法と競合できることを示す。
特に,ネットワークアーキテクチャに適切な境界を持つ訓練可能なDNNのクラスと,サンプルの複雑性に十分な条件が存在すること,対数的あるいは最悪の場合,ネットワークが安定かつ正確に拡散反応PDEを高い確率で近似できるような次元の線形スケーリングが存在すること,という新たな実用的存在定理を実証する。
関連論文リスト
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs [18.532617548168123]
本稿では,線形PDEに対する数学的に厳密なニューラルソルバについて述べる。
U-NetとMultiGridを原理的に統合したUGridソルバは、収束性と正確性の両方の数学的に厳密な証明である。
論文 参考訳(メタデータ) (2024-08-09T03:46:35Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
本稿では,未知多様体上の楕円型PDEを解くためのメッシュフリー計算フレームワークと機械学習理論を提案する。
提案したNNソルバは,新しいデータポイント上の一般化とほぼ同一の誤差を持つ新しいデータポイント上でPDEを強固に一般化できることを示す。
論文 参考訳(メタデータ) (2021-06-12T03:55:15Z) - Transfer Learning on Multi-Fidelity Data [0.0]
ニューラルネットワーク(NNs)は、しばしば複素系のダイナミクスを記述する部分微分方程式(PDEs)のサロゲートまたはエミュレータとして用いられる。
私たちは、トランスファーラーニングを用いた深層畳み込みNN(CNN)のトレーニングのためにデータ生成コストを削減するために、マルチファイダリティシミュレーションに依存しています。
数値実験により,比較的多数の低忠実度データと少ない高忠実度データとを混合することにより,計算速度と予測精度の最適バランスが得られた。
論文 参考訳(メタデータ) (2021-04-29T00:06:19Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。