論文の概要: Learning the boundary-to-domain mapping using Lifting Product Fourier Neural Operators for partial differential equations
- arxiv url: http://arxiv.org/abs/2406.16740v2
- Date: Mon, 1 Jul 2024 15:27:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 12:51:40.297991
- Title: Learning the boundary-to-domain mapping using Lifting Product Fourier Neural Operators for partial differential equations
- Title(参考訳): 偏微分方程式に対するリフティング積フーリエニューラル演算子を用いた境界-領域マッピングの学習
- Authors: Aditya Kashi, Arka Daw, Muralikrishnan Gopalakrishnan Meena, Hao Lu,
- Abstract要約: 我々は、任意の境界関数を領域全体の解にマッピングできる新しいFNOベースのアーキテクチャ、Lifting Product FNO(LP-FNO)を提案する。
2次元ポアソン方程式に対して提案したLP-FNOの有効性と分解能の独立性を実証する。
- 参考スコア(独自算出の注目度): 5.5927988408828755
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neural operators such as the Fourier Neural Operator (FNO) have been shown to provide resolution-independent deep learning models that can learn mappings between function spaces. For example, an initial condition can be mapped to the solution of a partial differential equation (PDE) at a future time-step using a neural operator. Despite the popularity of neural operators, their use to predict solution functions over a domain given only data over the boundary (such as a spatially varying Dirichlet boundary condition) remains unexplored. In this paper, we refer to such problems as boundary-to-domain problems; they have a wide range of applications in areas such as fluid mechanics, solid mechanics, heat transfer etc. We present a novel FNO-based architecture, named Lifting Product FNO (or LP-FNO) which can map arbitrary boundary functions defined on the lower-dimensional boundary to a solution in the entire domain. Specifically, two FNOs defined on the lower-dimensional boundary are lifted into the higher dimensional domain using our proposed lifting product layer. We demonstrate the efficacy and resolution independence of the proposed LP-FNO for the 2D Poisson equation.
- Abstract(参考訳): フーリエニューラル演算子(FNO)のようなニューラル演算子は、関数空間間のマッピングを学習する解像度に依存しないディープラーニングモデルを提供することが示されている。
例えば、初期条件は、ニューラル作用素を用いて将来の時間ステップで偏微分方程式(PDE)の解にマッピングすることができる。
ニューラル作用素の人気にもかかわらず、境界上のデータ(空間的に変化するディリクレ境界条件など)のみを与えられた領域上での解関数の予測には未探索のままである。
本稿では,境界領域間問題,流体力学,固体力学,熱伝達などの分野に幅広く応用されている問題について述べる。
我々は、低次元境界上で定義された任意の境界関数を領域全体の解にマッピングできる新しいFNOベースのアーキテクチャ、Lifting Product FNO(LP-FNO)を提案する。
具体的には,低次元境界上に定義された2つのFNOを,提案した昇降積層を用いて高次元領域に持ち上げる。
2次元ポアソン方程式に対して提案したLP-FNOの有効性と分解能の独立性を実証する。
関連論文リスト
- Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
一般化されたインタフェース条件を持つ非重複型シュワルツ型領域分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
ドメイン分解法では、ポアソン方程式とヘルムホルツ方程式の両方の解を学ぶことができる。
論文 参考訳(メタデータ) (2024-09-20T16:48:55Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
本稿では,メモリ要求を低減し,より一般化したデータ効率・並列化可能な演算子学習手法を提案する。
MG-TFNOは、実世界の実世界の現象の局所的構造と大域的構造を活用することで、大規模な分解能にスケールする。
乱流ナビエ・ストークス方程式において150倍以上の圧縮で誤差の半分以下を達成できる優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-29T20:18:52Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
論文 参考訳(メタデータ) (2023-08-24T17:29:57Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
我々は任意の測地上でPDEを解決するための新しいフレームワーク、viz.、geo-FNOを提案する。
Geo-FNO は入力(物理)領域を不規則で、一様格子を持つ潜在空間に変形させることを学ぶ。
我々は, 弾性, 塑性, オイラー方程式, ナビエ・ストークス方程式などの多種多様なPDEと, 前方モデリングと逆設計の問題を考察する。
論文 参考訳(メタデータ) (2022-07-11T21:55:47Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Train Once and Use Forever: Solving Boundary Value Problems in Unseen
Domains with Pre-trained Deep Learning Models [0.20999222360659606]
本稿では,ニューラルネットワークを用いて境界値問題(BVP)を解くための伝達可能なフレームワークを提案する。
まず,任意の境界条件にまたがるbvpの解を推論できるニューラルネットワークであるgfnet(emphgenomic flow network)を提案する。
そこで我々は,GFNetの推論を組み立てたりステッチしたりする新しい反復アルゴリズムである emphmosaic flow (MF) 予測器を提案する。
論文 参考訳(メタデータ) (2021-04-22T05:20:27Z) - Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks [0.5804039129951741]
本稿では,偏微分方程式の深層学習におけるトレーニングを改善するために,人工ニューラルネットワークにおける幾何対応トライアル関数を提案する。
均質なディリクレ境界条件を正確に課すために、トライアル関数は、PINN近似により$phi$と乗算される。
アフィン境界と曲線境界を持つ領域上の線形および非線形境界値問題に対する数値解を提案する。
論文 参考訳(メタデータ) (2021-04-17T03:02:52Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。