論文の概要: Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs
- arxiv url: http://arxiv.org/abs/2407.04157v1
- Date: Thu, 4 Jul 2024 21:23:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 15:00:44.283364
- Title: Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs
- Title(参考訳): 有限演算子学習 : ブリッジングニューラル演算子と効率的パラメトリック解の数値解法とPDEの最適化
- Authors: Shahed Rezaei, Reza Najian Asl, Kianoosh Taghikhani, Ahmad Moeineddin, Michael Kaliske, Markus Apel,
- Abstract要約: 本稿では,ニューラルネットワーク,物理情報処理機械学習,およびPDEを解くための標準的な数値法を組み合わせた手法を提案する。
データのない方法で偏微分方程式をパラメトリックに解き、正確な感度を与えることができる。
本研究では, 不均一材料中の定常熱方程式に着目した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a method that combines neural operators, physics-informed machine learning, and standard numerical methods for solving PDEs. The proposed approach extends each of the aforementioned methods and unifies them within a single framework. We can parametrically solve partial differential equations in a data-free manner and provide accurate sensitivities, meaning the derivatives of the solution space with respect to the design space. These capabilities enable gradient-based optimization without the typical sensitivity analysis costs, unlike adjoint methods that scale directly with the number of response functions. Our Finite Operator Learning (FOL) approach uses an uncomplicated feed-forward neural network model to directly map the discrete design space (i.e. parametric input space) to the discrete solution space (i.e. finite number of sensor points in the arbitrary shape domain) ensuring compliance with physical laws by designing them into loss functions. The discretized governing equations, as well as the design and solution spaces, can be derived from any well-established numerical techniques. In this work, we employ the Finite Element Method (FEM) to approximate fields and their spatial derivatives. Subsequently, we conduct Sobolev training to minimize a multi-objective loss function, which includes the discretized weak form of the energy functional, boundary conditions violations, and the stationarity of the residuals with respect to the design variables. Our study focuses on the steady-state heat equation within heterogeneous materials that exhibits significant phase contrast and possibly temperature-dependent conductivity. The network's tangent matrix is directly used for gradient-based optimization to improve the microstructure's heat transfer characteristics. ...
- Abstract(参考訳): 本稿では,ニューラルネットワーク,物理情報処理機械学習,およびPDEを解くための標準的な数値法を組み合わせた手法を提案する。
提案手法は、上記の各メソッドを拡張し、それらを単一のフレームワークに統合する。
データフリーな方法で偏微分方程式をパラメトリックに解き、正確な感度、すなわち設計空間に関する解空間の微分を与えることができる。
これらの機能は、応答関数の数に直接スケールする随伴法とは異なり、典型的な感度解析コストなしで勾配に基づく最適化を可能にする。
我々のFOL(Finite Operator Learning)アプローチでは、複雑でないフィードフォワードニューラルネットワークモデルを使用して、離散的な設計空間(パラメトリック入力空間)を直接離散的なソリューション空間(任意の形状領域における有限個のセンサポイント)にマッピングし、それらを損失関数に設計することで物理法則に準拠する。
離散化された支配方程式は、設計や解空間と同様に、確立された任意の数値技術から導出することができる。
本研究ではフィールドとその空間微分を近似するために有限要素法(FEM)を用いる。
その後、エネルギー汎関数の離散化弱形、境界条件違反、設計変数に対する残留物の定常性を含む多目的損失関数を最小化するためにソボレフ訓練を行う。
本研究は, 相コントラストに有意な温度依存性を示す不均一材料中の定常熱方程式に着目した。
ネットワークの接点行列は、組織の熱伝達特性を改善するために勾配に基づく最適化に直接使用される。
はぁ...。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Quantum algorithm for partial differential equations of non-conservative systems with spatially varying parameters [1.7453899104963828]
偏微分方程式(PDE)は熱伝達、流体流、電磁波などの様々な物理現象をモデル化するために重要である。
コンピュータ支援工学(CAE)では、製品性能の向上と開発コストの削減のために、細部分解能と大規模計算モデルを扱う能力が不可欠である。
空間的に異なるパラメータを持つ非保守系の2階線形PDEを解く量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-06T09:23:04Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - Integration of physics-informed operator learning and finite element
method for parametric learning of partial differential equations [0.0]
本稿では,偏微分方程式の解法として物理インフォームド・ディープラーニング手法を用いる手法を提案する。
その焦点は、相コントラストが顕著である不均一固体中の定常熱方程式である。
提案手法を標準有限要素法と比較し,正確かつ高速な予測法を示す。
論文 参考訳(メタデータ) (2024-01-04T17:01:54Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。