論文の概要: Exploring the Factors of "AI Guilt" Among Students -- Are You Guilty of Using AI in Your Homework?
- arxiv url: http://arxiv.org/abs/2407.10777v1
- Date: Mon, 15 Jul 2024 14:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 14:39:57.544193
- Title: Exploring the Factors of "AI Guilt" Among Students -- Are You Guilty of Using AI in Your Homework?
- Title(参考訳): 学生の「AIガイダンス」の要因を探る - 宿題にAIを使うことの罪悪感はあるか?
- Authors: Cecilia Ka Yuk Chan,
- Abstract要約: AI罪(AI guilt)とは、人類が伝統的に行ってきた学業におけるAIツールの使用から生じる道徳的な不快感である。
この研究は、AIの罪悪感に寄与する要因、その社会的・心理的影響、そして教育実践に影響を及ぼす要因について検討する。
この結果は、学術的完全性を再定義し、教育において私たちが何に価値があるかを再考する考え方を変える必要があることを示唆している。
- 参考スコア(独自算出の注目度): 3.8073142980733
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study explores the phenomenon of "AI guilt" among secondary school students, a form of moral discomfort arising from the use of AI tools in academic tasks traditionally performed by humans. Through qualitative methodologies, the research examines the factors contributing to AI guilt, its social and psychological impacts, and its implications for educational practices. The findings revealed three main dimensions for AI guilt - perceived laziness and authenticity, fear of judgment, and identity and self-efficacy concerns. The findings suggest a need to redefine academic integrity and shift our mindset to reconsider what we should value in education. The study also emphasizes the importance of ethical guidelines and educational support and provides implications to help students navigate the complexities of AI in education, reducing feelings of guilt while enhancing learning outcomes.
- Abstract(参考訳): 本研究では,中学生における「AI罪」の現象について考察する。これは,人間によって伝統的に行われている学術的課題におけるAIツールの使用による道徳的不快感の一形態である。
この研究は質的な方法論を通じて、AIの罪に寄与する要因、その社会的・心理的影響、そして教育実践に影響を及ぼす要因を調査している。
その結果、AIの罪悪感に対する3つの主要な側面が明らかになった。
この結果は、学術的完全性を再定義し、教育において私たちが何に価値があるかを再考する考え方を変える必要があることを示唆している。
この研究はまた、倫理的ガイドラインと教育支援の重要性を強調し、学生が教育におけるAIの複雑さをナビゲートし、学習成果を高めながら罪悪感を減少させるのに役立つ。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
教育におけるAIは、妥当性、信頼性、透明性、公平性、公平性に関する倫理的な懸念を提起する。
教育者、政策立案者、組織を含む様々な利害関係者は、教育における倫理的AIの使用を保証するガイドラインを開発した。
本稿では,AIを活用したツールの教育測定における倫理的意義について検討する。
論文 参考訳(メタデータ) (2024-06-27T05:28:40Z) - The Ethics of AI in Education [0.0]
人工知能の研究室ベースの科学から生きた人間の文脈への移行は多くの歴史的、社会文化的偏見、不平等、道徳的ジレンマに焦点を合わせている。
AIの幅広い倫理に関する疑問は、教育におけるAI(AIED)にも関係している。
AIEDは、その技術がユーザに与える影響、そのような技術が私たちが学び、教える方法の強化や変更にどのように使われるか、そして私たちが社会や個人として、教育の成果として価値あるものについて、さらなる課題を提起します。
論文 参考訳(メタデータ) (2024-03-22T11:41:37Z) - The AI Incident Database as an Educational Tool to Raise Awareness of AI
Harms: A Classroom Exploration of Efficacy, Limitations, & Future
Improvements [14.393183391019292]
AIインシデントデータベース(AIID)は、AI技術の現実世界への展開に起因する害や害の先行事例を索引付けする、比較的包括的なデータベースを提供する、数少ない試みの1つである。
本研究は、社会的に高い領域におけるAI損傷の有病率と重症度に対する意識を高めるための教育ツールとしてのAIIDの有効性を評価する。
論文 参考訳(メタデータ) (2023-10-10T02:55:09Z) - Assigning AI: Seven Approaches for Students, with Prompts [0.0]
本稿では,Large Language Models(LLM)の教育における転換的役割とその学習ツールとしての可能性について考察する。
AI-tutor、AI-coach、AI-mentor、AI-teammate、AI-tool、AI-simulator、AI-studentの7つのアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-13T03:36:36Z) - Is AI Changing the Rules of Academic Misconduct? An In-depth Look at
Students' Perceptions of 'AI-giarism' [0.0]
本研究は,AIと盗作を包含する学問的不正行為の創発的形態である,AI-giarismに対する学生の認識を探求する。
この発見は、AIコンテンツ生成に対する明確な不承認を伴う、複雑な理解の風景を描いている。
この研究は、学術、政策立案、そして教育におけるAI技術のより広範な統合に関する重要な洞察を提供する。
論文 参考訳(メタデータ) (2023-06-06T02:22:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。