論文の概要: On the Benefits of Memory for Modeling Time-Dependent PDEs
- arxiv url: http://arxiv.org/abs/2409.02313v1
- Date: Tue, 3 Sep 2024 21:56:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:51:59.822814
- Title: On the Benefits of Memory for Modeling Time-Dependent PDEs
- Title(参考訳): 時間依存型PDEのモデリングにおけるメモリの有用性について
- Authors: Ricardo Buitrago Ruiz, Tanya Marwah, Albert Gu, Andrej Risteski,
- Abstract要約: 本稿では、最近のSSMアーキテクチャに基づくネットワークであるメモリニューラル演算子(MemNO)とフーリエニューラル演算子(FNO)を紹介する。
MemNOはメモリ無しでベースラインを著しく上回り、目に見えないPDEの6倍以上のエラーを発生させる。
- 参考スコア(独自算出の注目度): 35.86010060677811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven techniques have emerged as a promising alternative to traditional numerical methods for solving partial differential equations (PDEs). These techniques frequently offer a better trade-off between computational cost and accuracy for many PDE families of interest. For time-dependent PDEs, existing methodologies typically treat PDEs as Markovian systems, i.e., the evolution of the system only depends on the ``current state'', and not the past states. However, distortion of the input signals -- e.g., due to discretization or low-pass filtering -- can render the evolution of the distorted signals non-Markovian. In this work, motivated by the Mori-Zwanzig theory of model reduction, we investigate the impact of architectures with memory for modeling PDEs: that is, when past states are explicitly used to predict the future. We introduce Memory Neural Operator (MemNO), a network based on the recent SSM architectures and Fourier Neural Operator (FNO). We empirically demonstrate on a variety of PDE families of interest that when the input is given on a low-resolution grid, MemNO significantly outperforms the baselines without memory, achieving more than 6 times less error on unseen PDEs. Via a combination of theory and experiments, we show that the effect of memory is particularly significant when the solution of the PDE has high frequency Fourier components (e.g., low-viscosity fluid dynamics), and it also increases robustness to observation noise.
- Abstract(参考訳): データ駆動技術は、偏微分方程式(PDE)を解く従来の数値法に代わる有望な方法として登場した。
これらの技術は、多くのPDEファミリの計算コストと精度のトレードオフをよく提供します。
時間に依存したPDEの場合、既存の方法論はPDEをマルコフ系として扱うのが一般的である。
しかし、例えば、離散化やローパスフィルタリングによる入力信号の歪みは、歪んだ信号の非マルコフ信号の進化を招きかねない。
本研究は, モリ・ズワンツィヒ理論によるモデル縮小の動機付けとして, PDEをモデル化するためのメモリを用いたアーキテクチャの影響について考察する。
本稿では,最近のSSMアーキテクチャに基づくネットワークであるメモリニューラル演算子(MemNO)とフーリエニューラル演算子(FNO)を紹介する。
我々は、低解像度グリッド上で入力が与えられると、MemNOはメモリ無しでベースラインを著しく上回り、目に見えないPDEの6倍以上の誤差を達成できる、様々なPDEファミリを経験的に実証した。
理論と実験の組み合わせにより、PDEの解が高周波フーリエ成分(例えば低粘度流体力学)を持つ場合、メモリの効果は特に重要であり、観測ノイズに対するロバスト性も向上することを示した。
関連論文リスト
- Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Physics-constrained robust learning of open-form partial differential equations from limited and noisy data [1.50528618730365]
本研究では,自由形式偏微分方程式(PDE)を有限・雑音データから頑健に解明する枠組みを提案する。
ニューラルネットワークに基づく予測モデルは、システム応答に適合し、生成されたPDEに対する報酬評価器として機能する。
数値実験により, 非線形力学系から, 極めてノイズの多いデータで支配方程式を発見できることを示す。
論文 参考訳(メタデータ) (2023-09-14T12:34:42Z) - PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers [40.097474800631]
時間依存偏微分方程式(PDE)は、科学や工学においてユビキタスである。
ディープニューラルネットワークに基づくサロゲートへの関心が高まっている。
論文 参考訳(メタデータ) (2023-08-10T17:53:05Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
我々は任意の測地上でPDEを解決するための新しいフレームワーク、viz.、geo-FNOを提案する。
Geo-FNO は入力(物理)領域を不規則で、一様格子を持つ潜在空間に変形させることを学ぶ。
我々は, 弾性, 塑性, オイラー方程式, ナビエ・ストークス方程式などの多種多様なPDEと, 前方モデリングと逆設計の問題を考察する。
論文 参考訳(メタデータ) (2022-07-11T21:55:47Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations [6.918364447822299]
本稿では,PDEポイントの集合を介してPDE情報を導入し,標準クリグ法と同様の後方予測を行うPDE Informed Kriging Model (PIK)を提案する。
学習性能をさらに向上させるために,PDEポイントをデザインし,PIKモデルと測定データに基づいたPDE情報を活用するアクティブPIKフレームワーク(APIK)を提案する。
論文 参考訳(メタデータ) (2020-12-22T02:31:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。