論文の概要: Quantum complexity and localization in random quantum circuits
- arxiv url: http://arxiv.org/abs/2409.03656v1
- Date: Thu, 5 Sep 2024 16:10:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 20:03:34.024252
- Title: Quantum complexity and localization in random quantum circuits
- Title(参考訳): ランダム量子回路における量子複雑性と局在
- Authors: Himanshu Sahu, Aranya Bhattacharya, Pingal Pratyush Nath,
- Abstract要約: ランダム量子回路の複雑性を計測・無測定で研究する。
測定なしの$N$ qubitsの場合、飽和値は$2N-1$、飽和時間は$2N$となる。
複雑性はアンダーソンの局所化と多体局在の新しいプローブとして機能する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum complexity has emerged as a central concept in diverse areas of physics, ranging from quantum computing to the theory of black holes. We perform a systematic study of complexity in random quantum circuits with and without measurements. We observe that complexity grows linearly before saturating to a constant value. For $N$ qubits without measurements, the saturation value scales as $2^{N-1}$, and the saturation time scales as $2^N$. This behaviour remains identical in the presence of random measurements with different probabilities, indicating that this notion of complexity is insensitive to the rate of measurement. We also study the behaviour of complexity in two variants of the random unitary floquet circuit, where we observe that complexity acts as a novel probe of Anderson localization and many-body localization.
- Abstract(参考訳): 量子複雑性は、量子コンピューティングからブラックホールの理論まで、物理学の様々な領域において中心的な概念として現れてきた。
ランダム量子回路の複雑性を計測・無測定で体系的に研究する。
一定の値に飽和する前に、複雑性が線形に増加するのを観察する。
測定なしの$N$ qubitsの場合、飽和値は$2^{N-1}$、飽和時間は$2^N$となる。
この振る舞いは、異なる確率を持つランダムな測定の存在下では同一であり、この複雑さの概念は測定速度に無関心であることを示している。
また、ランダムなユニタリ・フロケット回路の2つの変種における複雑性の挙動について検討し、アンダーソンの局所化と多体局在の新たなプローブとして複雑性が働くことを観察した。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Taming Quantum Time Complexity [45.867051459785976]
時間複雑性の設定において、正確さと遠心性の両方を達成する方法を示します。
我々は、トランスデューサと呼ばれるものに基づく量子アルゴリズムの設計に新しいアプローチを採用する。
論文 参考訳(メタデータ) (2023-11-27T14:45:19Z) - Complexity for one-dimensional discrete time quantum walk circuits [0.0]
1次元離散時間量子ウォーク(DTQW)から導かれる混合状態密度演算子の複雑性を計算する。
この複雑さは、混合状態の正準浄化から得られる2量子ビット量子回路を用いて計算される。
論文 参考訳(メタデータ) (2023-07-25T12:25:03Z) - Quantum complexity phase transitions in monitored random circuits [0.29998889086656577]
監視されたランダム回路における量子状態複雑性のダイナミクスについて検討する。
正確な量子状態の複雑性の進化は、測定率を変更する際に相転移を起こす。
論文 参考訳(メタデータ) (2023-05-24T18:00:11Z) - Saturation and recurrence of quantum complexity in random local quantum
dynamics [5.803309695504831]
量子複雑性 (quantum complexity) とは、与えられた状態またはユニタリチャネルを作成するのに必要な基本演算数の最小値である。
Brown と Susskind は、カオス量子系の複雑性は、系のサイズが最大値で飽和し、二重指数時間で再帰するまでの間、線形に成長すると予想した。
論文 参考訳(メタデータ) (2022-05-19T17:42:31Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
証明可能な性能保証を伴う忠実度推定のための新しい,効率的な量子アルゴリズムを開発した。
我々のアルゴリズムは量子特異値変換のような高度な量子線型代数技術を用いる。
任意の非自明な定数加算精度に対する忠実度推定は一般に困難であることを示す。
論文 参考訳(メタデータ) (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
パラメータ化量子回路で完了した2プレーヤゼロサムゲームとして,両部絡み検出を再構成する。
このプロトコルを線形光ネットワーク上で実験的に実装し、5量子量子純状態と2量子量子混合状態の両部絡み検出に有効であることを示す。
論文 参考訳(メタデータ) (2022-03-15T09:46:45Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Learning k-qubit Quantum Operators via Pauli Decomposition [11.498089180181365]
現在の量子系の量子ビット容量の制限により、量子サンプルの複雑さを$k$-qubit量子作用素で調べる。
我々は、$k$-qubitの量子演算の量子サンプルの複雑さが、その量子演算の古典的なサンプルの複雑さに匹敵することを示した。
論文 参考訳(メタデータ) (2021-02-10T01:20:55Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。