論文の概要: Differentiable programming across the PDE and Machine Learning barrier
- arxiv url: http://arxiv.org/abs/2409.06085v1
- Date: Mon, 9 Sep 2024 21:36:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 19:40:45.184594
- Title: Differentiable programming across the PDE and Machine Learning barrier
- Title(参考訳): PDEと機械学習の障壁を越えた微分プログラミング
- Authors: Nacime Bouziani, David A. Ham, Ado Farsi,
- Abstract要約: エンド・ツー・エンドの差別化可能なモデルを特定するための、非常に生産性の高い方法を提供する、汎用的な差別化可能なプログラミング抽象化を導入する。
我々のインターフェースは任意のPDEベースのシステムと機械学習モデルの結合を自動化する。
私たちのフレームワークはFiredrakeの有限要素ライブラリに採用され、PyTorchとJAXPエコシステムをサポートしています。
- 参考スコア(独自算出の注目度): 0.6554326244334868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The combination of machine learning and physical laws has shown immense potential for solving scientific problems driven by partial differential equations (PDEs) with the promise of fast inference, zero-shot generalisation, and the ability to discover new physics. Examples include the use of fundamental physical laws as inductive bias to machine learning algorithms, also referred to as physics-driven machine learning, and the application of machine learning to represent features not represented in the differential equations such as closures for unresolved spatiotemporal scales. However, the simulation of complex physical systems by coupling advanced numerics for PDEs with state-of-the-art machine learning demands the composition of specialist PDE solving frameworks with industry-standard machine learning tools. Hand-rolling either the PDE solver or the neural net will not cut it. In this work, we introduce a generic differentiable programming abstraction that provides scientists and engineers with a highly productive way of specifying end-to-end differentiable models coupling machine learning and PDE-based components, while relying on code generation for high performance. Our interface automates the coupling of arbitrary PDE-based systems and machine learning models and unlocks new applications that could not hitherto be tackled, while only requiring trivial changes to existing code. Our framework has been adopted in the Firedrake finite-element library and supports the PyTorch and JAX ecosystems, as well as downstream libraries.
- Abstract(参考訳): 機械学習と物理法則の組み合わせは、偏微分方程式(PDE)によって導かれる科学問題を、高速推論、ゼロショット一般化、新しい物理を発見する能力によって解決する大きな可能性を示している。
例えば、機械学習アルゴリズムの帰納的バイアスとしての基本的な物理法則の使用(物理駆動機械学習とも呼ばれる)や、未解決時空間スケールの閉包のような微分方程式で表現されない特徴を表現する機械学習の適用がある。
しかし、PDEの高度な数値と最先端の機械学習を結合して複雑な物理システムのシミュレーションを行うには、専門的なPDE問題解決フレームワークと業界標準の機械学習ツールを組み合わせる必要がある。
PDEソルバまたはニューラルネットのハンドローリングは、それを切断しない。
本研究では,機械学習とPDEベースのコンポーネントを結合したエンドツーエンドの差別化可能なモデルを,高性能なコード生成に頼りながら,科学者や技術者に極めて生産性の高い方法で記述する,汎用的な差別化可能なプログラミング抽象化を導入する。
私たちのインターフェースは任意のPDEベースのシステムと機械学習モデルの結合を自動化し、取り組まなかった新しいアプリケーションをアンロックします。
私たちのフレームワークはFiredrakeの有限要素ライブラリに採用され、PyTorchおよびJAXエコシステムと下流ライブラリをサポートしています。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Physics-driven machine learning models coupling PyTorch and Firedrake [0.0]
偏微分方程式 (Partial differential equation, PDE) は、複雑な物理系の記述とモデル化の中心である。
PDEベースの機械学習技術は、この制限に対処するために設計されている。
機械学習フレームワークPyTorchとPDEシステムFiredrakeの単純な結合について述べる。
論文 参考訳(メタデータ) (2023-03-13T05:42:58Z) - DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator
Splitting [12.655884541938656]
我々はDeep Operator-Splitting Network (DOSnet) と名付けた学習型PDEソルバを開発した。
DOSnetは物理規則から構築され、基礎となるダイナミクスを管理する演算子は学習可能なパラメータを含む。
我々は、演算子分解可能な微分方程式のいくつかのタイプでそれを訓練し、検証する。
論文 参考訳(メタデータ) (2022-12-11T18:23:56Z) - Solving Coupled Differential Equation Groups Using PINO-CDE [42.363646159367946]
PINO-CDEは結合微分方程式群(CDE)を解くためのディープラーニングフレームワークである
物理インフォームド・ニューラル演算子(PINO)の理論に基づいて、PINO-CDEはCDEの全ての量に対して単一のネットワークを使用する。
このフレームワークは、エンジニアリングダイナミクスとディープラーニング技術を統合し、CDEの解決と不確実性伝播のための新しい概念を明らかにする可能性がある。
論文 参考訳(メタデータ) (2022-10-01T08:39:24Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations [9.659504024299896]
本稿では,Regendre-Galerkinニューラルネットワークに基づく教師なし機械学習アルゴリズムを提案する。
提案したニューラルネットワークは、境界層挙動を有する特異摂動PDEと同様に、一般的な1Dおよび2DPDEに適用される。
論文 参考訳(メタデータ) (2022-07-21T00:47:47Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
偏微分方程式 (Partial differential equation, PDE) は、科学や工学における多くの問題を研究する上で重要な役割を果たしている。
本稿では,時間依存型PDEシステムのルールを自動的に学習する,Neural-PDEと呼ばれるシーケンス深層学習フレームワークを提案する。
我々の実験では、ニューラルPDEは20時間以内のトレーニングで効率よく力学を抽出し、正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-08T15:46:00Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
本手法は,複雑な物理系の理解に成功し,PDEに関わるタスクに対してそれらを制御できることを実証する。
論文 参考訳(メタデータ) (2020-01-21T11:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。