論文の概要: cymyc -- Calabi-Yau Metrics, Yukawas, and Curvature
- arxiv url: http://arxiv.org/abs/2410.19728v1
- Date: Fri, 25 Oct 2024 17:55:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:33:09.418313
- Title: cymyc -- Calabi-Yau Metrics, Yukawas, and Curvature
- Title(参考訳): cymyc -- Calabi-Yau Metrics, Yukawas, Curvature
- Authors: Per Berglund, Giorgi Butbaia, Tristan Hübsch, Vishnu Jejjala, Challenger Mishra, Damián Mayorga Peña, Justin Tan,
- Abstract要約: textttcymycには、このアンサッツを組み込んだ機械学習コンポーネントが含まれており、これらの空間におけるテンソル場をモデル化している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce \texttt{cymyc}, a high-performance Python library for numerical investigation of the geometry of a large class of string compactification manifolds and their associated moduli spaces. We develop a well-defined geometric ansatz to numerically model tensor fields of arbitrary degree on a large class of Calabi-Yau manifolds. \texttt{cymyc} includes a machine learning component which incorporates this ansatz to model tensor fields of interest on these spaces by finding an approximate solution to the system of partial differential equations they should satisfy.
- Abstract(参考訳): 大規模文字列コンパクト化多様体とその関連モジュライ空間の幾何学を数値的に研究するための高性能Pythonライブラリである「texttt{cymyc}」を紹介する。
我々は、カラビ・ヤウ多様体の大規模なクラス上で任意の次数のテンソル場を数値的にモデル化する、よく定義された幾何アンザッツを開発する。
\texttt{cymyc} は、これらの空間上のテンソル場をモデル化するためにこのアンザッツを組み込んだ機械学習コンポーネントを含み、それらが満たすべき偏微分方程式系の近似解を見つける。
関連論文リスト
- Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
フービニ・スタディ計量に基づく絡み合い尺度は、Cocchiarellaと同僚によって最近導入された。
本稿では,多モードガウス状態に対する幾何絡み合いの一般化であるガウスエンタングルメント尺度(GEM)を提案する。
自由度の高い系に対する計算可能な多部絡み合わせ測度を提供することにより、自由なボゾン場理論の洞察を得るために、我々の定義が利用できることを示す。
論文 参考訳(メタデータ) (2024-01-31T15:50:50Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Gromov-Hausdorff Distances for Comparing Product Manifolds of Model
Spaces [21.97865037637575]
計量幾何学からのグロモフ・ハウスドルフ距離を用いて、候補潜在測地間の距離の新たな概念を導入する。
本稿では,Gromov-Hausdorff距離を推定したグラフ探索空間を用いて最適潜時幾何学を探索する。
論文 参考訳(メタデータ) (2023-09-09T11:17:06Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Learning Size and Shape of Calabi-Yau Spaces [0.0]
文字列圧縮空間のメトリクスを計算するための新しい機械学習ライブラリを提案する。
モンテカルロのサンプル積分の性能を従来の数値近似と比較した。
論文 参考訳(メタデータ) (2021-11-02T08:48:53Z) - Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
Equivariant Projected Kernels [108.60991563944351]
本稿では、ベクトル値のガウス過程を幾何学に忠実に誘導するゲージ同変カーネルの構築法を提案する。
我々は,変分推論などの標準ガウスプロセストレーニング手法を,この設定に拡張する。
論文 参考訳(メタデータ) (2021-10-27T13:31:10Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
C 上の対称行列空間におけるグラフの連続表現を学ぶ。
これらの空間は双曲部分空間とユークリッド部分空間を同時に認めるリッチな幾何学を提供する。
提案するモデルは, apriori のグラフ特徴を見積もることなく, まったく異なる配置に自動的に適応することができる。
論文 参考訳(メタデータ) (2021-05-11T18:14:52Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - K\"ahler Geometry of Quiver Varieties and Machine Learning [0.0]
我々は、フレーム表現のモジュラー空間を用いた機械学習におけるニューラルネットワークの代数幾何学的定式化を開発する。
複素射影空間から構築された多変数活性化関数に対する普遍近似定理を証明する。
論文 参考訳(メタデータ) (2021-01-27T15:32:24Z) - Comparative Study of State-of-the-Art Matrix-Product-State Methods for
Lattice Models with Large Local Hilbert Spaces [0.06524460254566902]
マトリックス生成状態(MPS)は、柔軟で汎用的なアンザッツクラスを提供する。
計算複雑性に対処するための異なるアプローチを利用する,最先端MPSの3つの手法を記述・比較する。
本研究では,これらの手法の特性をホルシュタイン模型の例として解析し,高精度な計算と,関連する基底状態オブザーバブルの有限サイズスケーリング解析を行う。
論文 参考訳(メタデータ) (2020-11-14T23:24:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。