論文の概要: Error Bounds for Deep Learning-based Uncertainty Propagation in SDEs
- arxiv url: http://arxiv.org/abs/2410.22371v1
- Date: Mon, 28 Oct 2024 23:25:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:23:35.650071
- Title: Error Bounds for Deep Learning-based Uncertainty Propagation in SDEs
- Title(参考訳): SDEにおける深層学習に基づく不確実性伝播のための誤差境界
- Authors: Chun-Wei Kong, Luca Laurenti, Jay McMahon, Morteza Lahijanian,
- Abstract要約: 確率密度関数(PDF)はプロセスの不確実性を表す。
一般に、フォッカー・プランク偏微分方程式 (Fokker-Planck partial differential equation, FP-PDE) を閉形式で解くことは不可能である。
物理インフォームドニューラルネットワーク(PINN)は,既存の手法を用いて,解のPDFを近似するために訓練可能であることを示す。
- 参考スコア(独自算出の注目度): 11.729744197698718
- License:
- Abstract: Stochastic differential equations are commonly used to describe the evolution of stochastic processes. The uncertainty of such processes is best represented by the probability density function (PDF), whose evolution is governed by the Fokker-Planck partial differential equation (FP-PDE). However, it is generally infeasible to solve the FP-PDE in closed form. In this work, we show that physics-informed neural networks (PINNs) can be trained to approximate the solution PDF using existing methods. The main contribution is the analysis of the approximation error: we develop a theory to construct an arbitrary tight error bound with PINNs. In addition, we derive a practical error bound that can be efficiently constructed with existing training methods. Finally, we explain that this error-bound theory generalizes to approximate solutions of other linear PDEs. Several numerical experiments are conducted to demonstrate and validate the proposed methods.
- Abstract(参考訳): 確率微分方程式は一般に確率過程の進化を記述するために用いられる。
このような過程の不確実性は確率密度関数(PDF)によって最もよく表され、その進化はフォッカー・プランク偏微分方程式(FP-PDE)によって制御される。
しかし、一般にFP-PDEを閉形式で解くことは不可能である。
本研究では,物理インフォームドニューラルネットワーク(PINN)を学習し,既存の手法を用いて解のPDFを近似することができることを示す。
主な貢献は近似誤差の解析であり、PINNと結びついた任意のタイトな誤差を構築するための理論を開発する。
また,既存の訓練手法で効率的に構築できる実用的な誤差境界を導出する。
最後に、この誤差バウンド理論が他の線形PDEの近似解に一般化されることを説明する。
提案手法を実証し,検証するために,いくつかの数値実験を行った。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers [32.57938108395521]
線形偏微分方程式と呼ばれる力学モデルのクラスは、熱伝達、電磁気、波動伝播などの物理過程を記述するために用いられる。
離散化に基づく特殊数値法はPDEの解法として用いられる。
パラメータや測定の不確実性を無視することで、古典的なPDE解法は固有の近似誤差の一貫した推定を導出できない可能性がある。
論文 参考訳(メタデータ) (2022-12-23T17:02:59Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
本稿では,PDEのパラメータ・ツー・ソリューション(前方)と解・ツー・パラメータ(逆)マップを同時に学習する物理駆動型ディープ潜在変数モデル(PDDLVM)を提案する。
提案フレームワークは、観測データをシームレスに統合し、逆問題を解決するとともに、生成モデルを構築するために容易に拡張できる。
有限要素離散パラメトリックPDE問題に対して,本手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-09T15:40:53Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
本稿では,未知多様体上の楕円型PDEを解くためのメッシュフリー計算フレームワークと機械学習理論を提案する。
提案したNNソルバは,新しいデータポイント上の一般化とほぼ同一の誤差を持つ新しいデータポイント上でPDEを強固に一般化できることを示す。
論文 参考訳(メタデータ) (2021-06-12T03:55:15Z) - Estimates on the generalization error of Physics Informed Neural
Networks (PINNs) for approximating PDEs [16.758334184623152]
PDEの前方問題の解を近似するPINNの一般化誤差に関する厳密な上限を提供する。
抽象形式論を導入し、基礎となるPDEの安定性特性を利用して一般化誤差の見積を導出する。
論文 参考訳(メタデータ) (2020-06-29T16:05:48Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。